|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {Graffiti}, |
|
author={UR |
|
}, |
|
year={2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Graffiti dataset taken from https://www.graffiti.org/ and https://www.graffiti-database.com/. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/artificialhoney/graffiti" |
|
|
|
_LICENSE = "Apache License 2.0" |
|
|
|
_VERSION = "0.1.0" |
|
|
|
_SOURCES = [ |
|
"graffiti.org", |
|
"graffiti-database.com" |
|
] |
|
|
|
|
|
class GraffitiConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Graffiti.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Graffiti. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(GraffitiConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Graffiti(datasets.GeneratorBasedBuilder): |
|
"""Graffiti dataset taken from https://www.graffiti.org/ and https://www.graffiti-database.com/.""" |
|
|
|
BUILDER_CONFIG_CLASS = GraffitiConfig |
|
|
|
BUILDER_CONFIGS = [ |
|
GraffitiConfig( |
|
name="default", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"conditioning_image": datasets.Image(), |
|
"text": datasets.Value("string") |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
version=_VERSION, |
|
task_templates=[], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
images = [] |
|
metadata = [] |
|
conditioning = [] |
|
for source in _SOURCES: |
|
images.append(dl_manager.iter_archive(dl_manager.download("./data/{0}/images.tar.gz".format(source)))) |
|
conditioning.append(dl_manager.iter_archive(dl_manager.download("./data/{0}/conditioning.tar.gz".format(source)))) |
|
metadata.append(dl_manager.download("./data/{0}/metadata.jsonl".format(source))) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"images": images, |
|
"metadata": metadata, |
|
"conditioning": conditioning |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, metadata, images, conditioning): |
|
idx = 0 |
|
for index, meta in enumerate(metadata): |
|
m = [] |
|
with open(meta, encoding="utf-8") as f: |
|
for row in f: |
|
m.append(json.loads(row)) |
|
c = iter(conditioning[index]) |
|
for file_path, file_obj in images[index]: |
|
data = [x for x in m if file_path.endswith(x["file"])][0] |
|
|
|
conditioning_file = next(c) |
|
conditioning_file_path = conditioning_file[0] |
|
conditioning_file_obj = conditioning_file[1] |
|
|
|
text = data["caption"] |
|
if data["palette"] != None: |
|
colors = [] |
|
for color in data["palette"]: |
|
if color[2] in colors or "grey" in color[2]: |
|
continue |
|
colors.append(color[2]) |
|
if len(colors) > 0: |
|
text += ", in the colors " |
|
text += " and ".join(colors) |
|
if data["artist"] != None: |
|
|
|
text += ", by " + data["artist"] |
|
if data["city"] != None: |
|
text += ", located in " + data["city"] |
|
|
|
yield idx, { |
|
"image": {"path": file_path, "bytes": file_obj.read()}, |
|
"conditioning_image": {"path": conditioning_file_path, "bytes": conditioning_file_obj.read()}, |
|
"text": text, |
|
} |
|
idx+=1 |