File size: 3,404 Bytes
0c926db 49a3d18 0c926db 49a3d18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
annotations_creators:
- other
language_creators:
- other
language:
- en
expert-generated license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- question-answering
- text-retrieval
- text2text-generation
- other
- translation
- conversational
task_ids:
- extractive-qa
- closed-domain-qa
- utterance-retrieval
- document-retrieval
- closed-domain-qa
- open-book-qa
- closed-book-qa
train-eval-index:
- config: nsds
task: token-classification
task_id: entity_extraction
splits:
train_split: train
eval_split: test
col_mapping:
sentence: text
label: target
metrics:
- type: nsme-com
name: NSME-COM
config:
nsds
tags:
- chatbots
- e-commerce
- retail
- insurance
- consumer
- consumer goods
configs:
- nsds
---
# Dataset Card for NSME-COM
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://huggingface.co/asaxena1990)
- **Repository:** [https://huggingface.co/datasets/asaxena1990/NSME-COM)
- **Point of Contact:** (Ayushman Dash <ayushman@neuralspace.ai>, Ankur Saxena <ankursaxena@neuralspace.ai>)
- **Size of downloaded dataset files:** 10.86 KB
### Dataset Summary
NSME-COM, the NeuralSpace Massive E-commerce Dataset is a collection of resources for training, evaluating, and analyzing natural language understanding systems.
### Supported Tasks and Leaderboards
The leaderboard for the GLUE benchmark can be found [at this address](https://gluebenchmark.com/). It comprises the following tasks:
#### nsds
A manually-curated domain specific dataset by Data Engineers at NeuralSpace for rare E-commerce domains such as Insurance and Retail for NL researchers and practitioners to evaluate state of art models at https://www.neuralspace.ai/ in 100+ languages. The dataset files are available in JSON format.
### Languages
The language data in NSME-COM is in English (BCP-47 `en`)
## Dataset Structure
### Data Instances
#### nsds
- **Size of downloaded dataset files:** 10.86 KB
An example of 'test' looks as follows.
```
{
"text": "is it good to add roadside assistance?",
"intent": "Add",
"type": "Test"
}
```
An example of 'train' looks as follows.
```
{
"text": "how can I add my spouse as a nominee?",
"intent": "Add",
"type": "Train"
},
```
### Contributions
Ankur Saxena (ankursaxena@neuralspace.ai)
|