Datasets:

Languages:
French
License:
essai / essai.py
schlevik
change the bigbio text format to correct text
56aff8b
raw
history blame
9.01 kB
import os
import datasets
import numpy as np
import pandas as pd
from .bigbiohub import text_features
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['French']
_PUBMED = False
_LOCAL = True
_CITATION = """\
@misc{dalloux, title={Datasets – Clément Dalloux}, url={http://clementdalloux.fr/?page_id=28}, journal={Clément Dalloux}, author={Dalloux, Clément}}
"""
_DATASETNAME = "essai"
_DISPLAYNAME = "ESSAI"
_DESCRIPTION = """\
We manually annotated two corpora from the biomedical field. The ESSAI corpus \
contains clinical trial protocols in French. They were mainly obtained from the \
National Cancer Institute The typical protocol consists of two parts: the \
summary of the trial, which indicates the purpose of the trial and the methods \
applied; and a detailed description of the trial with the inclusion and \
exclusion criteria. The CAS corpus contains clinical cases published in \
scientific literature and training material. They are published in different \
journals from French-speaking countries (France, Belgium, Switzerland, Canada, \
African countries, tropical countries) and are related to various medical \
specialties (cardiology, urology, oncology, obstetrics, pulmonology, \
gastro-enterology). The purpose of clinical cases is to describe clinical \
situations of patients. Hence, their content is close to the content of clinical \
narratives (description of diagnoses, treatments or procedures, evolution, \
family history, expected audience, etc.). In clinical cases, the negation is \
frequently used for describing the patient signs, symptoms, and diagnosis. \
Speculation is present as well but less frequently.
This version only contain the annotated ESSAI corpus
"""
_HOMEPAGE = "https://clementdalloux.fr/?page_id=28"
_LICENSE = 'Data User Agreement'
_URLS = {
"essai_source": "",
"essai_bigbio_text": "",
"essai_bigbio_kb": "",
}
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
class ESSAI(datasets.GeneratorBasedBuilder):
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
DEFAULT_CONFIG_NAME = "essai_source"
BUILDER_CONFIGS = [
BigBioConfig(
name="essai_source",
version=SOURCE_VERSION,
description="ESSAI source schema",
schema="source",
subset_id="essai",
),
BigBioConfig(
name="essai_bigbio_text",
version=BIGBIO_VERSION,
description="ESSAI simplified BigBio schema for negation/speculation classification",
schema="bigbio_text",
subset_id="essai",
),
BigBioConfig(
name="essai_bigbio_kb",
version=BIGBIO_VERSION,
description="ESSAI simplified BigBio schema for part-of-speech-tagging",
schema="bigbio_kb",
subset_id="essai",
),
]
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"text": [datasets.Value("string")],
"lemmas": [datasets.Value("string")],
"POS_tags": [datasets.Value("string")],
"labels": [datasets.Value("string")],
}
)
elif self.config.schema == "bigbio_text":
features = text_features
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
if self.config.data_dir is None:
raise ValueError(
"This is a local dataset. Please pass the data_dir kwarg to load_dataset."
)
else:
data_dir = self.config.data_dir
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"datadir": data_dir},
),
]
def _generate_examples(self, datadir):
key = 0
# for file in ["ESSAI_neg.txt", "ESSAI_spec.txt"]:
filepath = os.path.join(datadir, "ESSAI_neg.txt")
filepath2 = os.path.join(datadir, 'ESSAI_spec.txt')
# label = "negation" if "neg" in file else "speculation"
id_docs = []
id_docs_2 = []
id_words = []
words = []
lemmas = []
POS_tags = []
NER_tags = []
NER_tags_2 = []
with open(filepath) as f:
for line in f.readlines():
line_content = line.split("\t")
if len(line_content) > 1:
id_docs.append(line_content[0])
id_words.append(line_content[1])
words.append(line_content[2])
lemmas.append(line_content[3])
POS_tags.append(line_content[4])
NER_tags.append(line_content[5].strip())
with open(filepath2) as f:
for line in f.readlines():
line_content = line.split("\t")
if len(line_content) > 1:
id_docs_2.append(line_content[0])
NER_tags_2.append(line_content[5].strip())
dic = {
"id_docs": np.array(list(map(int, id_docs))),
"id_words": id_words,
"words": words,
"lemmas": lemmas,
"POS_tags": POS_tags,
"NER_tags": NER_tags
}
dic2 = {
"id_docs": np.array(list(map(int, id_docs_2))),
"NER_tags": NER_tags_2
}
if self.config.schema == "source":
for doc_id in set(dic["id_docs"]):
idces = np.argwhere(dic["id_docs"] == doc_id)[:, 0]
text = [dic["words"][id] for id in idces]
text_lemmas = [dic["lemmas"][id] for id in idces]
POS_tags_ = [dic["POS_tags"][id] for id in idces]
yield key, {
"id": key,
"document_id": doc_id,
"text": text,
"lemmas": text_lemmas,
"POS_tags": POS_tags_,
"labels": [],
}
key += 1
elif self.config.schema == "bigbio_text":
for doc_id in set(dic["id_docs"]):
idces = np.argwhere(dic["id_docs"] == doc_id)[:, 0]
idces_2 = np.argwhere(dic2["id_docs"] == doc_id)[:, 0]
text = " ".join([dic["words"][id] for id in idces])
label_tokens = [dic["NER_tags"][id] for id in idces]
label2_tokens = [dic2["NER_tags"][id] for id in idces_2]
label_ = []
if not all(l == '***' for l in label_tokens):
label_.append("negation")
if not all(l == '***' for l in label2_tokens):
label_.append("speculation")
yield key, {
"id": key,
"document_id": doc_id,
"text": text,
"labels": label_,
}
key += 1
elif self.config.schema == "bigbio_kb":
for doc_id in set(dic["id_docs"]):
idces = np.argwhere(dic["id_docs"] == doc_id)[:, 0]
text = [dic["words"][id] for id in idces]
POS_tags_ = [dic["POS_tags"][id] for id in idces]
data = {
"id": str(key),
"document_id": doc_id,
"passages": [],
"entities": [],
"relations": [],
"events": [],
"coreferences": [],
}
key += 1
data["passages"] = [
{
"id": str(key + i),
"type": "sentence",
"text": [text[i]],
"offsets": [[i, i + 1]],
}
for i in range(len(text))
]
key += len(text)
for i in range(len(text)):
entity = {
"id": key,
"type": "POS_tag",
"text": [POS_tags_[i]],
"offsets": [[i, i + 1]],
"normalized": [],
}
data["entities"].append(entity)
key += 1
yield key, data