Datasets:

License:
File size: 16,840 Bytes
e5dbe31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecfd4b9
e5dbe31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
NTCIR-13 MedWeb (Medical Natural Language Processing for Web Document) task requires
to perform a multi-label classification that labels for eight diseases/symptoms must
be assigned to each tweet. Given pseudo-tweets, the output are Positive:p or Negative:n
labels for eight diseases/symptoms. The achievements of this task can almost be
directly applied to a fundamental engine for actual applications.

This task provides pseudo-Twitter messages in a cross-language and multi-label corpus,
covering three languages (Japanese, English, and Chinese), and annotated with eight
labels such as influenza, diarrhea/stomachache, hay fever, cough/sore throat, headache,
fever, runny nose, and cold.

The dataset consists of a single archive file:
    - ntcir13_MedWeb_taskdata.zip

which can be obtained after filling out a form to provide information about the
usage context under this URL: http://www.nii.ac.jp/dsc/idr/en/ntcir/ntcir.html

The zip archive contains a folder with name 'MedWeb_TestCollection'.
Inside this folder, there are the following individual data files:
β”œβ”€β”€ NTCIR-13_MedWeb_en_test.xlsx
β”œβ”€β”€ NTCIR-13_MedWeb_en_training.xlsx
β”œβ”€β”€ NTCIR-13_MedWeb_ja_test.xlsx
β”œβ”€β”€ NTCIR-13_MedWeb_ja_training.xlsx
β”œβ”€β”€ NTCIR-13_MedWeb_zh_test.xlsx
└── NTCIR-13_MedWeb_zh_training.xlsx

The excel sheets contain a training and test split for each of the languages
('en' stands for 'english', 'ja' stands for 'japanese' and 'zh' stands for
(simplified) chinese).

The archive file containing this dataset must be on the users local machine
in a single directory that is passed to `datasets.load_dataset` via
the `data_dir` kwarg. This loader script will read this archive file
directly (i.e. the user should not uncompress, untar or unzip any of
the files).

For more information on this dataset, see:
http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html
"""

import re
from pathlib import Path
from typing import Dict, List, Tuple

import datasets
import pandas as pd

from .bigbiohub import text_features
from .bigbiohub import text2text_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English', 'Chinese', 'Japanese']
_PUBMED = False
_LOCAL = True
_CITATION = """\
@article{wakamiya2017overview,
  author    = {Shoko Wakamiya, Mizuki Morita, Yoshinobu Kano, Tomoko Ohkuma and Eiji Aramaki},
  title     = {Overview of the NTCIR-13 MedWeb Task},
  journal   = {Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-13)},
  year      = {2017},
  url       = {
    http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings13/pdf/ntcir/01-NTCIR13-OV-MEDWEB-WakamiyaS.pdf
  },
}
"""

_DATASETNAME = "ntcir_13_medweb"
_DISPLAYNAME = "NTCIR-13 MedWeb"

_DESCRIPTION = """\
NTCIR-13 MedWeb (Medical Natural Language Processing for Web Document) task requires
to perform a multi-label classification that labels for eight diseases/symptoms must
be assigned to each tweet. Given pseudo-tweets, the output are Positive:p or Negative:n
labels for eight diseases/symptoms. The achievements of this task can almost be
directly applied to a fundamental engine for actual applications.

This task provides pseudo-Twitter messages in a cross-language and multi-label corpus,
covering three languages (Japanese, English, and Chinese), and annotated with eight
labels such as influenza, diarrhea/stomachache, hay fever, cough/sore throat, headache,
fever, runny nose, and cold.

For more information, see:
http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html

As this dataset also provides a parallel corpus of pseudo-tweets for english,
japanese and chinese it can also be used to train translation models between
these three languages.
"""

_HOMEPAGE = "http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html"

_LICENSE = 'Creative Commons Attribution 4.0 International'

# NOTE: Data can only be obtained (locally) by first filling out form to provide
# information about usage context under this link: http://www.nii.ac.jp/dsc/idr/en/ntcir/ntcir.html
_URLS = {
    _DATASETNAME: "ntcir13_MedWeb_taskdata.zip",
}

_SUPPORTED_TASKS = [
    Tasks.TRANSLATION,
    Tasks.TEXT_CLASSIFICATION,
]

_SOURCE_VERSION = "1.0.0"

_BIGBIO_VERSION = "1.0.0"


class NTCIR13MedWebDataset(datasets.GeneratorBasedBuilder):
    """
    NTCIR-13 MedWeb (Medical Natural Language Processing for Web Document) task requires
    to perform a multi-label classification that labels for eight diseases/symptoms must
    be assigned to each tweet. Given pseudo-tweets, the output are Positive:p or Negative:n
    labels for eight diseases/symptoms. The achievements of this task can almost be
    directly applied to a fundamental engine for actual applications.

    This task provides pseudo-Twitter messages in a cross-language and multi-label corpus,
    covering three languages (Japanese, English, and Chinese), and annotated with eight
    labels such as influenza, diarrhea/stomachache, hay fever, cough/sore throat, headache,
    fever, runny nose, and cold.

    For more information, see:
    http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html

    As this dataset also provides a parallel corpus of pseudo-tweets for english,
    japanese and chinese it can also be used to train translation models between
    these three languages.
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        # Source configuration - all classification data for all languages
        BigBioConfig(
            name="ntcir_13_medweb_source",
            version=SOURCE_VERSION,
            description="NTCIR 13 MedWeb source schema",
            schema="source",
            subset_id="ntcir_13_medweb_source",
        )
    ]
    for language_name, language_code in (
        ("Japanese", "ja"),
        ("English", "en"),
        ("Chinese", "zh"),
    ):
        # NOTE: BigBio text classification configurations
        # Text classification data for each language
        BUILDER_CONFIGS.append(
            BigBioConfig(
                name=f"ntcir_13_medweb_classification_{language_code}_bigbio_text",
                version=BIGBIO_VERSION,
                description=f"NTCIR 13 MedWeb BigBio {language_name} Classification schema",
                schema="bigbio_text",
                subset_id=f"ntcir_13_medweb_classification_{language_code}_bigbio_text",
            ),
        )

        for target_language_name, target_language_code in (
            ("Japanese", "ja"),
            ("English", "en"),
            ("Chinese", "zh"),
        ):
            # NOTE: BigBio text to text (translation) configurations
            # Parallel text corpora for all pairs of languages
            if language_name != target_language_name:
                BUILDER_CONFIGS.append(
                    BigBioConfig(
                        name=f"ntcir_13_medweb_translation_{language_code}_{target_language_code}_bigbio_t2t",
                        version=BIGBIO_VERSION,
                        description=(
                            f"NTCIR 13 MedWeb BigBio {language_name} -> {target_language_name} translation schema",
                        ),
                        schema="bigbio_t2t",
                        subset_id=f"ntcir_13_medweb_translation_{language_code}_{target_language_code}_bigbio_t2t",
                    ),
                )

    DEFAULT_CONFIG_NAME = "ntcir_13_medweb_source"

    def _info(self) -> datasets.DatasetInfo:
        # Create the source schema; this schema will keep all keys/information/labels
        # as close to the original dataset as possible.
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "ID": datasets.Value("string"),
                    "Language": datasets.Value("string"),
                    "Tweet": datasets.Value("string"),
                    "Influenza": datasets.Value("string"),
                    "Diarrhea": datasets.Value("string"),
                    "Hayfever": datasets.Value("string"),
                    "Cough": datasets.Value("string"),
                    "Headache": datasets.Value("string"),
                    "Fever": datasets.Value("string"),
                    "Runnynose": datasets.Value("string"),
                    "Cold": datasets.Value("string"),
                }
            )
        elif self.config.schema == "bigbio_text":
            features = text_features
        elif self.config.schema == "bigbio_t2t":
            features = text2text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        if self.config.data_dir is None:
            raise ValueError(
                "This is a local dataset. Please pass the data_dir kwarg to load_dataset."
            )
        else:
            data_dir = self.config.data_dir

        raw_data_dir = dl_manager.download_and_extract(
            str(Path(data_dir) / _URLS[_DATASETNAME])
        )

        data_dir = Path(raw_data_dir) / "MedWeb_TestCollection"

        if self.config.schema == "source":
            filepaths = {
                datasets.Split.TRAIN: sorted(Path(data_dir).glob("*_training.xlsx")),
                datasets.Split.TEST: sorted(Path(data_dir).glob("*_test.xlsx")),
            }
        elif self.config.schema == "bigbio_text":
            # NOTE: Identify the language for the chosen subset using regex
            pattern = r"ntcir_13_medweb_classification_(?P<language_code>ja|en|zh)_bigbio_text"
            match = re.search(pattern=pattern, string=self.config.subset_id)

            if not match:
                raise ValueError(
                    "Unable to parse language code for text classification from dataset subset id: "
                    f"'{self.config.subset_id}'. Attempted to parse using this regex pattern: "
                    f"'{pattern}' but failed to get a match."
                )

            language_code = match.group("language_code")

            filepaths = {
                datasets.Split.TRAIN: (
                    Path(data_dir) / f"NTCIR-13_MedWeb_{language_code}_training.xlsx",
                ),
                datasets.Split.TEST: (
                    Path(data_dir) / f"NTCIR-13_MedWeb_{language_code}_test.xlsx",
                ),
            }
        elif self.config.schema == "bigbio_t2t":
            pattern = r"ntcir_13_medweb_translation_(?P<source_language_code>ja|en|zh)_(?P<target_language_code>ja|en|zh)_bigbio_t2t"
            match = re.search(pattern=pattern, string=self.config.subset_id)

            if not match:
                raise ValueError(
                    "Unable to parse source and target language codes for translation "
                    f"from dataset subset id: '{self.config.subset_id}'. Attempted to parse "
                    f"using this regex pattern: '{pattern}' but failed to get a match."
                )

            source_language_code = match.group("source_language_code")
            target_language_code = match.group("target_language_code")

            filepaths = {
                datasets.Split.TRAIN: (
                    Path(data_dir)
                    / f"NTCIR-13_MedWeb_{source_language_code}_training.xlsx",
                    Path(data_dir)
                    / f"NTCIR-13_MedWeb_{target_language_code}_training.xlsx",
                ),
                datasets.Split.TEST: (
                    Path(data_dir)
                    / f"NTCIR-13_MedWeb_{source_language_code}_test.xlsx",
                    Path(data_dir)
                    / f"NTCIR-13_MedWeb_{target_language_code}_test.xlsx",
                ),
            }

        return [
            datasets.SplitGenerator(
                name=split_name,
                gen_kwargs={
                    "filepaths": filepaths[split_name],
                    "split": split_name,
                },
            )
            for split_name in (datasets.Split.TRAIN, datasets.Split.TEST)
        ]

    def _language_from_filepath(self, filepath: Path):
        pattern = r"NTCIR-13_MedWeb_(?P<language_code>ja|en|zh)_(training|test).xlsx"
        match = re.search(pattern=pattern, string=filepath.name)

        if not match:
            raise ValueError(
                "Unable to parse language code from filename. "
                f"Filename was: '{filepath.name}' and tried to parse using this "
                f"regex pattern: '{pattern}' but failed to get a match."
            )

        return match.group("language_code")

    def _generate_examples(
        self, filepaths: Tuple[Path], split: str
    ) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        if self.config.schema == "source":
            dataframes = []

            for filepath in filepaths:
                language_code = self._language_from_filepath(filepath)
                df = pd.read_excel(filepath, sheet_name=f"{language_code}_{split}")
                df["Language"] = language_code
                dataframes.append(df)

            df = pd.concat(dataframes)

            for row_index, row in enumerate(df.itertuples(index=False)):
                yield row_index, row._asdict()

        elif self.config.schema == "bigbio_text":
            (filepath,) = filepaths
            language_code = self._language_from_filepath(filepath)

            df = pd.read_excel(
                filepath,
                sheet_name=f"{language_code}_{split}",
            )

            label_column_names = [
                column_name
                for column_name in df.columns
                if column_name not in ("ID", "Tweet")
            ]
            labels = (
                df[label_column_names]
                .apply(lambda row: row[row == "p"].index.tolist(), axis=1)
                .values
            )

            ids = df["ID"]
            tweets = df["Tweet"]

            for row_index, (record_labels, record_id, tweet) in enumerate(
                zip(labels, ids, tweets)
            ):
                yield row_index, {
                    "id": record_id,
                    "text": tweets,
                    "document_id": filepath.stem,
                    "labels": record_labels,
                }
        elif self.config.schema == "bigbio_t2t":
            source_filepath, target_filepath = filepaths

            source_language_code = self._language_from_filepath(source_filepath)
            target_language_code = self._language_from_filepath(target_filepath)

            source_df = pd.read_excel(
                source_filepath,
                sheet_name=f"{source_language_code}_{split}",
            )[["ID", "Tweet"]]
            source_df["id_int"] = source_df["ID"].str.extract(r"(\d+)").astype(int)

            target_df = pd.read_excel(
                target_filepath,
                sheet_name=f"{target_language_code}_{split}",
            )[["ID", "Tweet"]]
            target_df["id_int"] = target_df["ID"].str.extract(r"(\d+)").astype(int)

            df_combined = source_df.merge(
                target_df, on="id_int", suffixes=("_source", "_target")
            )[["id_int", "Tweet_source", "Tweet_target"]]

            for row_index, record in enumerate(df_combined.itertuples(index=False)):
                row = record._asdict()
                yield row_index, {
                    "id": f"{row['id_int']}_{source_language_code}_{target_language_code}",
                    "document_id": f"t2t_{source_language_code}_{target_language_code}",
                    "text_1": row["Tweet_source"],
                    "text_2": row["Tweet_target"],
                    "text_1_name": source_language_code,
                    "text_2_name": target_language_code,
                }