--- language: - en - zh - ja bigbio_language: - English - Chinese - Japanese license: cc-by-4.0 bigbio_license_shortname: CC_BY_4p0 pretty_name: NTCIR-13 MedWeb homepage: http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html bigbio_pubmed: False bigbio_public: False bigbio_tasks: - TRANSLATION - TEXT_CLASSIFICATION --- # Dataset Card for NTCIR-13 MedWeb ## Dataset Description - **Homepage:** http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html - **Pubmed:** False - **Public:** False - **Tasks:** Translation, Text Classification NTCIR-13 MedWeb (Medical Natural Language Processing for Web Document) task requires to perform a multi-label classification that labels for eight diseases/symptoms must be assigned to each tweet. Given pseudo-tweets, the output are Positive:p or Negative:n labels for eight diseases/symptoms. The achievements of this task can almost be directly applied to a fundamental engine for actual applications. This task provides pseudo-Twitter messages in a cross-language and multi-label corpus, covering three languages (Japanese, English, and Chinese), and annotated with eight labels such as influenza, diarrhea/stomachache, hay fever, cough/sore throat, headache, fever, runny nose, and cold. For more information, see: http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html As this dataset also provides a parallel corpus of pseudo-tweets for english, japanese and chinese it can also be used to train translation models between these three languages. ## Citation Information ``` @article{wakamiya2017overview, author = {Shoko Wakamiya, Mizuki Morita, Yoshinobu Kano, Tomoko Ohkuma and Eiji Aramaki}, title = {Overview of the NTCIR-13 MedWeb Task}, journal = {Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-13)}, year = {2017}, url = { http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings13/pdf/ntcir/01-NTCIR13-OV-MEDWEB-WakamiyaS.pdf }, } ```