Datasets:
File size: 4,575 Bytes
1a16f09 47b0aa0 ccf8b20 1a16f09 89a7104 cf2ea44 89a7104 cf2ea44 1a16f09 ccf8b20 1a16f09 ccf8b20 1a16f09 262602c 1a16f09 ccf8b20 1a16f09 ccf8b20 1a16f09 262602c 1a16f09 147f1cd 1a16f09 7c6487b 1a16f09 147f1cd 1a16f09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
"""HuggingFace loading script for the JamALT dataset."""
import csv
from dataclasses import dataclass
import json
import os
from pathlib import Path
from typing import Optional
import datasets
_VERSION = "1.1.0"
_CITATION = """\
@misc{cifka-2023-jam-alt,
author = {Ond\v{r}ej C\'ifka and
Constantinos Dimitriou and
{Cheng-i} Wang and
Hendrik Schreiber and
Luke Miner and
Fabian-Robert St\"oter},
title = {{Jam-ALT}: A Formatting-Aware Lyrics Transcription Benchmark},
eprint = {arXiv:2311.13987},
year = 2023
}
@inproceedings{durand-2023-contrastive,
author={Durand, Simon and Stoller, Daniel and Ewert, Sebastian},
booktitle={2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
title={Contrastive Learning-Based Audio to Lyrics Alignment for Multiple Languages},
year={2023},
pages={1-5},
address={Rhodes Island, Greece},
doi={10.1109/ICASSP49357.2023.10096725}
}
"""
_DESCRIPTION = """\
Jam-ALT: A formatting-aware lyrics transcription benchmark.
"""
_HOMEPAGE = "https://audioshake.github.io/jam-alt"
_METADATA_FILENAME = "metadata.csv"
_LANGUAGE_NAME_TO_CODE = {
"English": "en",
"French": "fr",
"German": "de",
"Spanish": "es",
}
@dataclass
class JamAltBuilderConfig(datasets.BuilderConfig):
language: Optional[str] = None
with_audio: bool = True
decode_audio: bool = True
sampling_rate: Optional[int] = None
mono: bool = True
class JamAltDataset(datasets.GeneratorBasedBuilder):
_DESCRIPTION
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIG_CLASS = JamAltBuilderConfig
BUILDER_CONFIGS = [JamAltBuilderConfig("all")] + [
JamAltBuilderConfig(lang, language=lang)
for lang in _LANGUAGE_NAME_TO_CODE.values()
]
DEFAULT_CONFIG_NAME = "all"
def _info(self):
feat_dict = {
"name": datasets.Value("string"),
"text": datasets.Value("string"),
"language": datasets.Value("string"),
"license_type": datasets.Value("string"),
}
if self.config.with_audio:
feat_dict["audio"] = datasets.Audio(
decode=self.config.decode_audio,
sampling_rate=self.config.sampling_rate,
mono=self.config.mono,
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(feat_dict),
supervised_keys=("audio", "text") if "audio" in feat_dict else None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
metadata_path = dl_manager.download(_METADATA_FILENAME)
audio_paths, text_paths, metadata = [], [], []
with open(metadata_path, encoding="utf-8") as f:
for row in csv.DictReader(f):
if (
self.config.language is None
or _LANGUAGE_NAME_TO_CODE[row["Language"]] == self.config.language
):
audio_paths.append("audio/" + row["Filepath"])
text_paths.append(
"lyrics/" + os.path.splitext(row["Filepath"])[0] + ".txt"
)
metadata.append(row)
text_paths = dl_manager.download(text_paths)
audio_paths = (
dl_manager.download(audio_paths) if self.config.with_audio else None
)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs=dict(
text_paths=text_paths,
audio_paths=audio_paths,
metadata=metadata,
),
),
]
def _generate_examples(self, text_paths, audio_paths, metadata):
if audio_paths is None:
audio_paths = [None] * len(text_paths)
for text_path, audio_path, meta in zip(text_paths, audio_paths, metadata):
name = os.path.splitext(meta["Filepath"])[0]
with open(text_path, encoding="utf-8") as text_f:
record = {
"name": name,
"text": text_f.read(),
"language": _LANGUAGE_NAME_TO_CODE[meta["Language"]],
"license_type": meta["LicenseType"],
}
if audio_path is not None:
record["audio"] = audio_path
yield name, record
|