Datasets:
File size: 9,817 Bytes
c1492c7 237399b c1492c7 237399b 40e114d 237399b 40e114d 237399b 40e114d 237399b 40e114d 237399b 40e114d 237399b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': 001.Black_footed_Albatross
'1': 002.Laysan_Albatross
'2': 003.Sooty_Albatross
'3': 004.Groove_billed_Ani
'4': 005.Crested_Auklet
'5': 006.Least_Auklet
'6': 007.Parakeet_Auklet
'7': 008.Rhinoceros_Auklet
'8': 009.Brewer_Blackbird
'9': 010.Red_winged_Blackbird
'10': 011.Rusty_Blackbird
'11': 012.Yellow_headed_Blackbird
'12': 013.Bobolink
'13': 014.Indigo_Bunting
'14': 015.Lazuli_Bunting
'15': 016.Painted_Bunting
'16': 017.Cardinal
'17': 018.Spotted_Catbird
'18': 019.Gray_Catbird
'19': 020.Yellow_breasted_Chat
'20': 021.Eastern_Towhee
'21': 022.Chuck_will_Widow
'22': 023.Brandt_Cormorant
'23': 024.Red_faced_Cormorant
'24': 025.Pelagic_Cormorant
'25': 026.Bronzed_Cowbird
'26': 027.Shiny_Cowbird
'27': 028.Brown_Creeper
'28': 029.American_Crow
'29': 030.Fish_Crow
'30': 031.Black_billed_Cuckoo
'31': 032.Mangrove_Cuckoo
'32': 033.Yellow_billed_Cuckoo
'33': 034.Gray_crowned_Rosy_Finch
'34': 035.Purple_Finch
'35': 036.Northern_Flicker
'36': 037.Acadian_Flycatcher
'37': 038.Great_Crested_Flycatcher
'38': 039.Least_Flycatcher
'39': 040.Olive_sided_Flycatcher
'40': 041.Scissor_tailed_Flycatcher
'41': 042.Vermilion_Flycatcher
'42': 043.Yellow_bellied_Flycatcher
'43': 044.Frigatebird
'44': 045.Northern_Fulmar
'45': 046.Gadwall
'46': 047.American_Goldfinch
'47': 048.European_Goldfinch
'48': 049.Boat_tailed_Grackle
'49': 050.Eared_Grebe
'50': 051.Horned_Grebe
'51': 052.Pied_billed_Grebe
'52': 053.Western_Grebe
'53': 054.Blue_Grosbeak
'54': 055.Evening_Grosbeak
'55': 056.Pine_Grosbeak
'56': 057.Rose_breasted_Grosbeak
'57': 058.Pigeon_Guillemot
'58': 059.California_Gull
'59': 060.Glaucous_winged_Gull
'60': 061.Heermann_Gull
'61': 062.Herring_Gull
'62': 063.Ivory_Gull
'63': 064.Ring_billed_Gull
'64': 065.Slaty_backed_Gull
'65': 066.Western_Gull
'66': 067.Anna_Hummingbird
'67': 068.Ruby_throated_Hummingbird
'68': 069.Rufous_Hummingbird
'69': 070.Green_Violetear
'70': 071.Long_tailed_Jaeger
'71': 072.Pomarine_Jaeger
'72': 073.Blue_Jay
'73': 074.Florida_Jay
'74': 075.Green_Jay
'75': 076.Dark_eyed_Junco
'76': 077.Tropical_Kingbird
'77': 078.Gray_Kingbird
'78': 079.Belted_Kingfisher
'79': 080.Green_Kingfisher
'80': 081.Pied_Kingfisher
'81': 082.Ringed_Kingfisher
'82': 083.White_breasted_Kingfisher
'83': 084.Red_legged_Kittiwake
'84': 085.Horned_Lark
'85': 086.Pacific_Loon
'86': 087.Mallard
'87': 088.Western_Meadowlark
'88': 089.Hooded_Merganser
'89': 090.Red_breasted_Merganser
'90': 091.Mockingbird
'91': 092.Nighthawk
'92': 093.Clark_Nutcracker
'93': 094.White_breasted_Nuthatch
'94': 095.Baltimore_Oriole
'95': 096.Hooded_Oriole
'96': 097.Orchard_Oriole
'97': 098.Scott_Oriole
'98': 099.Ovenbird
'99': 100.Brown_Pelican
'100': 101.White_Pelican
'101': 102.Western_Wood_Pewee
'102': 103.Sayornis
'103': 104.American_Pipit
'104': 105.Whip_poor_Will
'105': 106.Horned_Puffin
'106': 107.Common_Raven
'107': 108.White_necked_Raven
'108': 109.American_Redstart
'109': 110.Geococcyx
'110': 111.Loggerhead_Shrike
'111': 112.Great_Grey_Shrike
'112': 113.Baird_Sparrow
'113': 114.Black_throated_Sparrow
'114': 115.Brewer_Sparrow
'115': 116.Chipping_Sparrow
'116': 117.Clay_colored_Sparrow
'117': 118.House_Sparrow
'118': 119.Field_Sparrow
'119': 120.Fox_Sparrow
'120': 121.Grasshopper_Sparrow
'121': 122.Harris_Sparrow
'122': 123.Henslow_Sparrow
'123': 124.Le_Conte_Sparrow
'124': 125.Lincoln_Sparrow
'125': 126.Nelson_Sharp_tailed_Sparrow
'126': 127.Savannah_Sparrow
'127': 128.Seaside_Sparrow
'128': 129.Song_Sparrow
'129': 130.Tree_Sparrow
'130': 131.Vesper_Sparrow
'131': 132.White_crowned_Sparrow
'132': 133.White_throated_Sparrow
'133': 134.Cape_Glossy_Starling
'134': 135.Bank_Swallow
'135': 136.Barn_Swallow
'136': 137.Cliff_Swallow
'137': 138.Tree_Swallow
'138': 139.Scarlet_Tanager
'139': 140.Summer_Tanager
'140': 141.Artic_Tern
'141': 142.Black_Tern
'142': 143.Caspian_Tern
'143': 144.Common_Tern
'144': 145.Elegant_Tern
'145': 146.Forsters_Tern
'146': 147.Least_Tern
'147': 148.Green_tailed_Towhee
'148': 149.Brown_Thrasher
'149': 150.Sage_Thrasher
'150': 151.Black_capped_Vireo
'151': 152.Blue_headed_Vireo
'152': 153.Philadelphia_Vireo
'153': 154.Red_eyed_Vireo
'154': 155.Warbling_Vireo
'155': 156.White_eyed_Vireo
'156': 157.Yellow_throated_Vireo
'157': 158.Bay_breasted_Warbler
'158': 159.Black_and_white_Warbler
'159': 160.Black_throated_Blue_Warbler
'160': 161.Blue_winged_Warbler
'161': 162.Canada_Warbler
'162': 163.Cape_May_Warbler
'163': 164.Cerulean_Warbler
'164': 165.Chestnut_sided_Warbler
'165': 166.Golden_winged_Warbler
'166': 167.Hooded_Warbler
'167': 168.Kentucky_Warbler
'168': 169.Magnolia_Warbler
'169': 170.Mourning_Warbler
'170': 171.Myrtle_Warbler
'171': 172.Nashville_Warbler
'172': 173.Orange_crowned_Warbler
'173': 174.Palm_Warbler
'174': 175.Pine_Warbler
'175': 176.Prairie_Warbler
'176': 177.Prothonotary_Warbler
'177': 178.Swainson_Warbler
'178': 179.Tennessee_Warbler
'179': 180.Wilson_Warbler
'180': 181.Worm_eating_Warbler
'181': 182.Yellow_Warbler
'182': 183.Northern_Waterthrush
'183': 184.Louisiana_Waterthrush
'184': 185.Bohemian_Waxwing
'185': 186.Cedar_Waxwing
'186': 187.American_Three_toed_Woodpecker
'187': 188.Pileated_Woodpecker
'188': 189.Red_bellied_Woodpecker
'189': 190.Red_cockaded_Woodpecker
'190': 191.Red_headed_Woodpecker
'191': 192.Downy_Woodpecker
'192': 193.Bewick_Wren
'193': 194.Cactus_Wren
'194': 195.Carolina_Wren
'195': 196.House_Wren
'196': 197.Marsh_Wren
'197': 198.Rock_Wren
'198': 199.Winter_Wren
'199': 200.Common_Yellowthroat
- name: bbox
sequence: float64
splits:
- name: train
num_bytes: 578565600.046
num_examples: 5994
- name: test
num_bytes: 571979272.934
num_examples: 5794
download_size: 1145059821
dataset_size: 1150544872.98
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
task_categories:
- image-classification
size_categories:
- 10K<n<100K
---
# CUB-200-2011
![](example.jpg)
This dataset contains the Caltech-UCSD Birds-200-2011 (CUB-200-2011) dataset, from [here](https://www.vision.caltech.edu/datasets/cub_200_2011/).
Each example consists of an image, a label, and a bounding box. (The dataset also contains x/y locations of "parts", e.g. beak, right eye, left wing, throat, etc. and "attributes", e.g. beak shape, wing color, feather pattern. I have not included either of these. Contact me if you want me to add them.)
**Note:** Some of these images are also in ImageNet!
### Data Splits
The CUB-200-2011 dataset has 2 splits: _train_ and _test_.
| Dataset Split | Number of Instances in Split |
| ------------- | ------------------------------------------- |
| Train | 5,994 |
| Test | 5,794 |
There are 200 classes, with either 29-30 examples per class in the train split. The test split has more variance in the number of examples per class; most are 29-30 but there are some with fewer (the lowest is 11).
### Bounding Boxes
Each bounding box is in the form of [x0, y0, x1, y1] and can be used as such:
```python
import datasets
from PIL import Image, ImageDraw
import matplotlib.pyplot as plt
dataset = datasets.load_dataset("bentrevett/cub-200-2011")
example = dataset["train"][0]
image = example["image"]
bbox = example["bbox"]
draw = ImageDraw.Draw(image)
draw.rectangle(bbox, outline="red", width=2)
plt.imshow(image)
```
![](with-bbox.jpg)
### Citation Information
```
@techreport{WahCUB_200_2011,
Title = The Caltech-UCSD Birds-200-2011 Dataset,
Author = {Wah, C. and Branson, S. and Welinder, P. and Perona, P. and Belongie, S.},
Year = {2011}
Institution = {California Institute of Technology},
Number = {CNS-TR-2011-001}
}
``` |