|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple, Union |
|
|
|
import datasets |
|
import jsonlines |
|
|
|
from .bigbiohub import kb_features, BigBioConfig, Tasks |
|
|
|
_CITATION = """\ |
|
@InProceedings{wuehrl_klinger_2022, |
|
author = {Wuehrl, Amelie and Klinger, Roman}, |
|
title = {Recovering Patient Journeys: A Corpus of Biomedical Entities and Relations on Twitter (BEAR)}, |
|
booktitle = {Proceedings of The 13th Language Resources and Evaluation Conference}, |
|
month = {June}, |
|
year = {2022}, |
|
address = {Marseille, France}, |
|
publisher = {European Language Resources Association} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "bear" |
|
_DISPLAYNAME = "BEAR" |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_LICENSE = "CC_BY_SA_4p0" |
|
|
|
_DESCRIPTION = """\ |
|
A dataset of 2100 Twitter posts annotated with 14 different types of biomedical entities (e.g., disease, treatment, |
|
risk factor, etc.) and 20 relation types (including caused, treated, worsens, etc.). |
|
""" |
|
_HOMEPAGE = "https://www.ims.uni-stuttgart.de/en/research/resources/corpora/bioclaim/" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://www.ims.uni-stuttgart.de/documents/ressourcen/korpora/bioclaim/bear-corpus-WuehrlKlinger-\ |
|
LREC2022.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class BearDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
BEAR: A Corpus of Biomedical Entities and Relations |
|
|
|
A dataset of 2100 Twitter posts annotated with 14 different types of |
|
biomedical entities (e.g., disease, treatment, risk factor, etc.) |
|
and 20 relation types (including caused, treated, worsens, etc.). |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="bear_source", |
|
version=SOURCE_VERSION, |
|
description="bear source schema", |
|
schema="source", |
|
subset_id="bear", |
|
), |
|
BigBioConfig( |
|
name="bear_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="bear BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="bear", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "bear_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"document_text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"offsets": datasets.Sequence(datasets.Value("int32")), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"arg1_id": datasets.Value("string"), |
|
"arg2_id": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
) |
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": Path(data_dir) / "corpus" / "bear.jsonl", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
uid = 0 |
|
input_file = filepath |
|
with jsonlines.open(input_file, "r") as file: |
|
for document in file: |
|
document_id: str = document.pop("doc_id") |
|
document_text: str = document.pop("doc_text") |
|
entities: Dict[str, Dict[str, Union[str, int]]] = document.pop("entities", {}) |
|
relations: List[Dict[str, Union[str, int]]] = document.pop("relations", []) |
|
|
|
if not entities and not relations: |
|
continue |
|
|
|
if self.config.schema == "source": |
|
source_example = self._to_source_example( |
|
document_id=document_id, |
|
document_text=document_text, |
|
entities=entities, |
|
relations=relations, |
|
) |
|
yield uid, source_example |
|
elif self.config.schema == "bigbio_kb": |
|
bigbio_example = self._to_bigbio_example( |
|
document_id=document_id, |
|
document_text=document_text, |
|
entities=entities, |
|
relations=relations, |
|
) |
|
yield uid, bigbio_example |
|
|
|
uid += 1 |
|
|
|
def _to_source_example( |
|
self, |
|
document_id: str, |
|
document_text: str, |
|
entities: Dict[str, Dict[str, Union[str, int]]], |
|
relations: List[Dict[str, Union[str, int]]], |
|
) -> Dict: |
|
source_example = { |
|
"document_id": document_id, |
|
"document_text": document_text, |
|
} |
|
|
|
|
|
_entities = [] |
|
for id, entity_values in entities.items(): |
|
if not entity_values: |
|
continue |
|
start = entity_values.pop("begin") |
|
end = entity_values.pop("end") |
|
type = entity_values.pop("tag") |
|
text = document_text[start:end] |
|
|
|
entity = { |
|
"id": f"{document_id}_{id}", |
|
"type": type, |
|
"text": text, |
|
"offsets": [start, end], |
|
} |
|
_entities.append(entity) |
|
source_example["entities"] = _entities |
|
|
|
|
|
_relations = [] |
|
for id, relation_values in enumerate(relations): |
|
end_entity = relation_values.pop("end_entity") |
|
rel_tag = relation_values.pop("rel_tag") |
|
start_entity = relation_values.pop("start_entity") |
|
|
|
relation = { |
|
"id": f"{document_id}_relation_{id}", |
|
"type": rel_tag, |
|
"arg1_id": f"{document_id}_{start_entity}", |
|
"arg2_id": f"{document_id}_{end_entity}", |
|
} |
|
_relations.append(relation) |
|
source_example["relations"] = _relations |
|
|
|
return source_example |
|
|
|
def _to_bigbio_example( |
|
self, |
|
document_id: str, |
|
document_text: str, |
|
entities: Dict[str, Dict[str, Union[str, int]]], |
|
relations: List[Dict[str, Union[str, int]]], |
|
) -> Dict: |
|
bigbio_example = { |
|
"id": f"{document_id}_id", |
|
"document_id": document_id, |
|
"passages": [ |
|
{ |
|
"id": f"{document_id}_passage", |
|
"type": "social_media_text", |
|
"text": [document_text], |
|
"offsets": [[0, len(document_text)]], |
|
} |
|
], |
|
"events": [], |
|
"coreferences": [], |
|
} |
|
|
|
|
|
_entities = [] |
|
for id, entity_values in entities.items(): |
|
if not entity_values: |
|
continue |
|
start = entity_values.pop("begin") |
|
end = entity_values.pop("end") |
|
type = entity_values.pop("tag") |
|
text = document_text[start:end] |
|
|
|
entity = { |
|
"id": f"{document_id}_{id}", |
|
"type": type, |
|
"text": [text], |
|
"offsets": [[start, end]], |
|
"normalized": [], |
|
} |
|
_entities.append(entity) |
|
bigbio_example["entities"] = _entities |
|
|
|
|
|
_relations = [] |
|
for id, relation_values in enumerate(relations): |
|
end_entity = relation_values.pop("end_entity") |
|
rel_tag = relation_values.pop("rel_tag") |
|
start_entity = relation_values.pop("start_entity") |
|
|
|
relation = { |
|
"id": f"{document_id}_relation_{id}", |
|
"type": rel_tag, |
|
"arg1_id": f"{document_id}_{start_entity}", |
|
"arg2_id": f"{document_id}_{end_entity}", |
|
"normalized": [], |
|
} |
|
_relations.append(relation) |
|
bigbio_example["relations"] = _relations |
|
|
|
return bigbio_example |
|
|