File size: 8,116 Bytes
6cac892 2fa7c7a 6cac892 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict, List
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
from .bigbiohub import parse_brat_file
from .bigbiohub import brat_parse_to_bigbio_kb
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{kim-etal-2009-overview,
title = "Overview of {B}io{NLP}{'}09 Shared Task on Event Extraction",
author = "Kim, Jin-Dong and
Ohta, Tomoko and
Pyysalo, Sampo and
Kano, Yoshinobu and
Tsujii, Jun{'}ichi",
booktitle = "Proceedings of the {B}io{NLP} 2009 Workshop Companion Volume for Shared Task",
month = jun,
year = "2009",
address = "Boulder, Colorado",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W09-1401",
pages = "1--9",
}
"""
_DATASETNAME = "bionlp_shared_task_2009"
_DISPLAYNAME = "BioNLP 2009"
_DESCRIPTION = """\
The BioNLP Shared Task 2009 was organized by GENIA Project and its corpora were curated based
on the annotations of the publicly available GENIA Event corpus and an unreleased (blind) section
of the GENIA Event corpus annotations, used for evaluation.
"""
_HOMEPAGE = "http://www.geniaproject.org/shared-tasks/bionlp-shared-task-2009"
_LICENSE = 'GENIA Project License for Annotated Corpora'
_URL_BASE = "http://www.nactem.ac.uk/GENIA/current/Shared-tasks/BioNLP-ST-2009/"
_URLS = {
_DATASETNAME: {
"train": _URL_BASE + "bionlp09_shared_task_training_data_rev2.tar.gz",
"test": _URL_BASE
+ "bionlp09_shared_task_test_data_without_gold_annotation.tar.gz",
"dev": _URL_BASE + "bionlp09_shared_task_development_data_rev1.tar.gz",
},
}
_SUPPORTED_TASKS = [
Tasks.NAMED_ENTITY_RECOGNITION,
Tasks.EVENT_EXTRACTION,
Tasks.COREFERENCE_RESOLUTION,
]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
# https://2011.bionlp-st.org/bionlp-shared-task-2011/genia-event-extraction-genia
class BioNLPSharedTask2009(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="bionlp_shared_task_2009_source",
version=SOURCE_VERSION,
description="bionlp_shared_task_2009 source schema",
schema="source",
subset_id="bionlp_shared_task_2009",
),
BigBioConfig(
name="bionlp_shared_task_2009_bigbio_kb",
version=BIGBIO_VERSION,
description="bionlp_shared_task_2009 BigBio schema",
schema="bigbio_kb",
subset_id="bionlp_shared_task_2009",
),
]
DEFAULT_CONFIG_NAME = "bionlp_shared_task_2009_source"
_ROLE_MAPPING = {
"Theme2": "Theme",
"Theme3": "Theme",
"Theme4": "Theme",
"Site2": "Site",
}
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"text_bound_annotations": [
{
"id": datasets.Value("string"),
"offsets": [[datasets.Value("int64")]],
"text": [datasets.Value("string")],
"type": datasets.Value("string"),
}
],
"events": [
{
"arguments": [
{
"ref_id": datasets.Value("string"),
"role": datasets.Value("string"),
}
],
"id": datasets.Value("string"),
"trigger": datasets.Value("string"),
"type": datasets.Value("string"),
}
],
"relations": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"arg1_id": datasets.Value("string"),
"arg2_id": datasets.Value("string"),
"normalized": [
{
"db_name": datasets.Value("string"),
"db_id": datasets.Value("string"),
}
],
}
],
"equivalences": [datasets.Value("string")],
"attributes": [datasets.Value("string")],
"normalizations": [datasets.Value("string")],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir_train = dl_manager.download_and_extract(urls["train"])
data_dir_test = dl_manager.download_and_extract(urls["test"])
data_dir_dev = dl_manager.download_and_extract(urls["dev"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir_train,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir_test,
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir_dev,
"split": "dev",
},
),
]
def _standardize_arguments_roles(self, kb_example: Dict) -> Dict:
for event in kb_example["events"]:
for argument in event["arguments"]:
role = argument["role"]
argument["role"] = self._ROLE_MAPPING.get(role, role)
return kb_example
def _generate_examples(self, filepath, split):
filepath = Path(filepath)
txt_files: List[Path] = [
file for file in filepath.iterdir() if file.suffix == ".txt"
]
if self.config.schema == "source":
for i, file in enumerate(txt_files):
brat_content = parse_brat_file(file)
yield i, brat_content
elif self.config.schema == "bigbio_kb":
for i, file in enumerate(txt_files):
brat_content = parse_brat_file(file)
kb_example = brat_parse_to_bigbio_kb(brat_content)
kb_example = self._standardize_arguments_roles(kb_example)
kb_example["id"] = kb_example["document_id"]
yield i, kb_example
|