Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 9,500 Bytes
eedd3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a698827
 
 
eedd3bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a698827
eedd3bf
 
 
 
 
a698827
 
eedd3bf
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from pathlib import Path
from typing import List

import datasets

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
from .bigbiohub import parse_brat_file
from .bigbiohub import brat_parse_to_bigbio_kb


_DATASETNAME = "bionlp_st_2013_ge"
_DISPLAYNAME = "BioNLP 2013 GE"

_SOURCE_VIEW_NAME = "source"
_UNIFIED_VIEW_NAME = "bigbio"

_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{kim-etal-2013-genia,
    title = "The {G}enia Event Extraction Shared Task, 2013 Edition - Overview",
    author = "Kim, Jin-Dong  and
      Wang, Yue  and
      Yasunori, Yamamoto",
    booktitle = "Proceedings of the {B}io{NLP} Shared Task 2013 Workshop",
    month = aug,
    year = "2013",
    address = "Sofia, Bulgaria",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W13-2002",
    pages = "8--15",
}
"""

_DESCRIPTION = """\
The BioNLP-ST GE task has been promoting development of fine-grained
information extraction (IE) from biomedical
documents, since 2009. Particularly, it has focused on the domain of
NFkB as a model domain of Biomedical IE
"""

_HOMEPAGE = "https://github.com/openbiocorpora/bionlp-st-2013-ge"

_LICENSE = 'GENIA Project License for Annotated Corpora'

_URLs = {
    "source": "https://github.com/openbiocorpora/bionlp-st-2013-ge/archive/refs/heads/master.zip",
    "bigbio_kb": "https://github.com/openbiocorpora/bionlp-st-2013-ge/archive/refs/heads/master.zip",
}

_SUPPORTED_TASKS = [
    Tasks.EVENT_EXTRACTION,
    Tasks.NAMED_ENTITY_RECOGNITION,
    Tasks.RELATION_EXTRACTION,
    Tasks.COREFERENCE_RESOLUTION,
]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


class bionlp_st_2013_ge(datasets.GeneratorBasedBuilder):
    """The BioNLP-ST GE task has been promoting development of fine-grained information extraction (IE) from biomedical
    documents, since 2009. Particularly, it has focused on the domain of NFkB as a model domain of Biomedical IE"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="bionlp_st_2013_ge_source",
            version=SOURCE_VERSION,
            description="bionlp_st_2013_ge source schema",
            schema="source",
            subset_id="bionlp_st_2013_ge",
        ),
        BigBioConfig(
            name="bionlp_st_2013_ge_bigbio_kb",
            version=BIGBIO_VERSION,
            description="bionlp_st_2013_ge BigBio schema",
            schema="bigbio_kb",
            subset_id="bionlp_st_2013_ge",
        ),
    ]

    DEFAULT_CONFIG_NAME = "bionlp_st_2013_ge_source"

    def _info(self):
        """
        - `features` defines the schema of the parsed data set. The schema depends on the
        chosen `config`: If it is `_SOURCE_VIEW_NAME` the schema is the schema of the
        original data. If `config` is `_UNIFIED_VIEW_NAME`, then the schema is the
        canonical KB-task schema defined in `biomedical/schemas/kb.py`.
        """
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "document_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "text_bound_annotations": [  # T line in brat, e.g. type or event trigger
                        {
                            "offsets": datasets.Sequence([datasets.Value("int32")]),
                            "text": datasets.Sequence(datasets.Value("string")),
                            "type": datasets.Value("string"),
                            "id": datasets.Value("string"),
                        }
                    ],
                    "events": [  # E line in brat
                        {
                            "trigger": datasets.Value(
                                "string"
                            ),  # refers to the text_bound_annotation of the trigger,
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "arguments": datasets.Sequence(
                                {
                                    "role": datasets.Value("string"),
                                    "ref_id": datasets.Value("string"),
                                }
                            ),
                        }
                    ],
                    "relations": [  # R line in brat
                        {
                            "id": datasets.Value("string"),
                            "head": {
                                "ref_id": datasets.Value("string"),
                                "role": datasets.Value("string"),
                            },
                            "tail": {
                                "ref_id": datasets.Value("string"),
                                "role": datasets.Value("string"),
                            },
                            "type": datasets.Value("string"),
                        }
                    ],
                    "equivalences": [  # Equiv line in brat
                        {
                            "id": datasets.Value("string"),
                            "ref_ids": datasets.Sequence(datasets.Value("string")),
                        }
                    ],
                    "attributes": [  # M or A lines in brat
                        {
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "ref_id": datasets.Value("string"),
                            "value": datasets.Value("string"),
                        }
                    ],
                    "normalizations": [  # N lines in brat
                        {
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "ref_id": datasets.Value("string"),
                            "resource_name": datasets.Value(
                                "string"
                            ),  # Name of the resource, e.g. "Wikipedia"
                            "cuid": datasets.Value(
                                "string"
                            ),  # ID in the resource, e.g. 534366
                            "text": datasets.Value(
                                "string"
                            ),  # Human readable description/name of the entity, e.g. "Barack Obama"
                        }
                    ],
                },
            )
        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(
        self, dl_manager: datasets.DownloadManager
    ) -> List[datasets.SplitGenerator]:

        my_urls = _URLs[self.config.schema]
        data_dir = Path(dl_manager.download_and_extract(my_urls))
        data_files = {
            "train": data_dir / f"bionlp-st-2013-ge-master" / "original-data" / "train",
            "dev": data_dir / f"bionlp-st-2013-ge-master" / "original-data" / "devel",
            "test": data_dir / f"bionlp-st-2013-ge-master" / "original-data" / "test",
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"data_files": data_files["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"data_files": data_files["dev"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"data_files": data_files["test"]},
            ),
        ]

    def _generate_examples(self, data_files: Path):
        if self.config.schema == "source":
            txt_files = list(data_files.glob("*txt"))
            for guid, txt_file in enumerate(txt_files):
                example = parse_brat_file(txt_file)
                example["id"] = str(guid)
                yield guid, example
        elif self.config.schema == "bigbio_kb":
            txt_files = list(data_files.glob("*txt"))
            for guid, txt_file in enumerate(txt_files):
                example = brat_parse_to_bigbio_kb(
                    parse_brat_file(txt_file)
                )
                example["id"] = str(guid)
                yield guid, example
        else:
            raise ValueError(f"Invalid config: {self.config.name}")