File size: 9,189 Bytes
f0f0969 d1a153f f0f0969 492d811 f0f0969 d1a153f f0f0969 d1a153f f0f0969 d1a153f f0f0969 d1a153f f0f0969 d1a153f f0f0969 d1a153f f0f0969 d1a153f 492d811 f0f0969 d1a153f f0f0969 d1a153f 492d811 f0f0969 d1a153f f0f0969 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Iterable, List
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
from .bigbiohub import parse_brat_file
from .bigbiohub import brat_parse_to_bigbio_kb
_DATASETNAME = "bionlp_st_2013_gro"
_DISPLAYNAME = "BioNLP 2013 GRO"
_SOURCE_VIEW_NAME = "source"
_UNIFIED_VIEW_NAME = "bigbio"
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{kim-etal-2013-gro,
title = "{GRO} Task: Populating the Gene Regulation Ontology with events and relations",
author = "Kim, Jung-jae and
Han, Xu and
Lee, Vivian and
Rebholz-Schuhmann, Dietrich",
booktitle = "Proceedings of the {B}io{NLP} Shared Task 2013 Workshop",
month = aug,
year = "2013",
address = "Sofia, Bulgaria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W13-2007",
pages = "50--57",
}
"""
_DESCRIPTION = """\
GRO Task: Populating the Gene Regulation Ontology with events and
relations. A data set from the bio NLP shared tasks competition from 2013
"""
_HOMEPAGE = "https://github.com/openbiocorpora/bionlp-st-2013-gro"
_LICENSE = 'GENIA Project License for Annotated Corpora'
_URLs = {
"train": "data/train.zip",
"validation": "data/devel.zip",
"test": "data/test.zip",
}
_SUPPORTED_TASKS = [
Tasks.EVENT_EXTRACTION,
Tasks.NAMED_ENTITY_RECOGNITION,
Tasks.RELATION_EXTRACTION,
]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class bionlp_st_2013_gro(datasets.GeneratorBasedBuilder):
"""GRO Task: Populating the Gene Regulation Ontology with events and
relations. A data set from the bio NLP shared tasks competition from 2013"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="bionlp_st_2013_gro_source",
version=SOURCE_VERSION,
description="bionlp_st_2013_gro source schema",
schema="source",
subset_id="bionlp_st_2013_gro",
),
BigBioConfig(
name="bionlp_st_2013_gro_bigbio_kb",
version=BIGBIO_VERSION,
description="bionlp_st_2013_gro BigBio schema",
schema="bigbio_kb",
subset_id="bionlp_st_2013_gro",
),
]
DEFAULT_CONFIG_NAME = "bionlp_st_2013_gro_source"
def _info(self):
"""
- `features` defines the schema of the parsed data set. The schema depends on the
chosen `config`: If it is `_SOURCE_VIEW_NAME` the schema is the schema of the
original data. If `config` is `_UNIFIED_VIEW_NAME`, then the schema is the
canonical KB-task schema defined in `biomedical/schemas/kb.py`.
"""
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger
{
"offsets": datasets.Sequence([datasets.Value("int32")]),
"text": datasets.Sequence(datasets.Value("string")),
"type": datasets.Value("string"),
"id": datasets.Value("string"),
}
],
"events": [ # E line in brat
{
"trigger": datasets.Value(
"string"
), # refers to the text_bound_annotation of the trigger,
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"arguments": datasets.Sequence(
{
"role": datasets.Value("string"),
"ref_id": datasets.Value("string"),
}
),
}
],
"relations": [ # R line in brat
{
"id": datasets.Value("string"),
"head": {
"ref_id": datasets.Value("string"),
"role": datasets.Value("string"),
},
"tail": {
"ref_id": datasets.Value("string"),
"role": datasets.Value("string"),
},
"type": datasets.Value("string"),
}
],
"equivalences": [ # Equiv line in brat
{
"id": datasets.Value("string"),
"ref_ids": datasets.Sequence(datasets.Value("string")),
}
],
"attributes": [ # M or A lines in brat
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"ref_id": datasets.Value("string"),
"value": datasets.Value("string"),
}
],
"normalizations": [ # N lines in brat
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"ref_id": datasets.Value("string"),
"resource_name": datasets.Value(
"string"
), # Name of the resource, e.g. "Wikipedia"
"cuid": datasets.Value(
"string"
), # ID in the resource, e.g. 534366
"text": datasets.Value(
"string"
), # Human readable description/name of the entity, e.g. "Barack Obama"
}
],
},
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
data_files = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"data_files": dl_manager.iter_files(data_files["train"])},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"data_files": dl_manager.iter_files(data_files["validation"])},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"data_files": dl_manager.iter_files(data_files["test"])},
),
]
def _generate_examples(self, data_files: Iterable[str]):
if self.config.schema == "source":
guid = 0
for data_file in data_files:
txt_file = Path(data_file)
if txt_file.suffix != ".txt":
continue
example = parse_brat_file(txt_file)
example["id"] = str(guid)
yield guid, example
guid += 1
elif self.config.schema == "bigbio_kb":
guid = 0
for data_file in data_files:
txt_file = Path(data_file)
if txt_file.suffix != ".txt":
continue
example = brat_parse_to_bigbio_kb(
parse_brat_file(txt_file)
)
example["id"] = str(guid)
yield guid, example
guid += 1
else:
raise ValueError(f"Invalid config: {self.config.name}")
|