Datasets:

Modalities:
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
File size: 9,189 Bytes
f0f0969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1a153f
f0f0969
 
 
 
 
 
492d811
 
 
f0f0969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1a153f
 
 
f0f0969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1a153f
f0f0969
 
 
d1a153f
f0f0969
 
 
d1a153f
f0f0969
 
 
d1a153f
f0f0969
 
 
d1a153f
f0f0969
d1a153f
 
 
 
 
492d811
f0f0969
 
d1a153f
f0f0969
d1a153f
 
 
 
 
492d811
 
f0f0969
 
 
d1a153f
f0f0969
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from pathlib import Path
from typing import Iterable, List

import datasets

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
from .bigbiohub import parse_brat_file
from .bigbiohub import brat_parse_to_bigbio_kb


_DATASETNAME = "bionlp_st_2013_gro"
_DISPLAYNAME = "BioNLP 2013 GRO"

_SOURCE_VIEW_NAME = "source"
_UNIFIED_VIEW_NAME = "bigbio"

_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{kim-etal-2013-gro,
    title = "{GRO} Task: Populating the Gene Regulation Ontology with events and relations",
    author = "Kim, Jung-jae  and
      Han, Xu  and
      Lee, Vivian  and
      Rebholz-Schuhmann, Dietrich",
    booktitle = "Proceedings of the {B}io{NLP} Shared Task 2013 Workshop",
    month = aug,
    year = "2013",
    address = "Sofia, Bulgaria",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W13-2007",
    pages = "50--57",
}
"""

_DESCRIPTION = """\
GRO Task: Populating the Gene Regulation Ontology with events and
relations. A data set from the bio NLP shared tasks competition from 2013
"""

_HOMEPAGE = "https://github.com/openbiocorpora/bionlp-st-2013-gro"

_LICENSE = 'GENIA Project License for Annotated Corpora'

_URLs = {
    "train": "data/train.zip",
    "validation": "data/devel.zip",
    "test": "data/test.zip",
}

_SUPPORTED_TASKS = [
    Tasks.EVENT_EXTRACTION,
    Tasks.NAMED_ENTITY_RECOGNITION,
    Tasks.RELATION_EXTRACTION,
]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


class bionlp_st_2013_gro(datasets.GeneratorBasedBuilder):
    """GRO Task: Populating the Gene Regulation Ontology with events and
    relations. A data set from the bio NLP shared tasks competition from 2013"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="bionlp_st_2013_gro_source",
            version=SOURCE_VERSION,
            description="bionlp_st_2013_gro source schema",
            schema="source",
            subset_id="bionlp_st_2013_gro",
        ),
        BigBioConfig(
            name="bionlp_st_2013_gro_bigbio_kb",
            version=BIGBIO_VERSION,
            description="bionlp_st_2013_gro BigBio schema",
            schema="bigbio_kb",
            subset_id="bionlp_st_2013_gro",
        ),
    ]

    DEFAULT_CONFIG_NAME = "bionlp_st_2013_gro_source"

    def _info(self):
        """
        - `features` defines the schema of the parsed data set. The schema depends on the
        chosen `config`: If it is `_SOURCE_VIEW_NAME` the schema is the schema of the
        original data. If `config` is `_UNIFIED_VIEW_NAME`, then the schema is the
        canonical KB-task schema defined in `biomedical/schemas/kb.py`.
        """
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "document_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "text_bound_annotations": [  # T line in brat, e.g. type or event trigger
                        {
                            "offsets": datasets.Sequence([datasets.Value("int32")]),
                            "text": datasets.Sequence(datasets.Value("string")),
                            "type": datasets.Value("string"),
                            "id": datasets.Value("string"),
                        }
                    ],
                    "events": [  # E line in brat
                        {
                            "trigger": datasets.Value(
                                "string"
                            ),  # refers to the text_bound_annotation of the trigger,
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "arguments": datasets.Sequence(
                                {
                                    "role": datasets.Value("string"),
                                    "ref_id": datasets.Value("string"),
                                }
                            ),
                        }
                    ],
                    "relations": [  # R line in brat
                        {
                            "id": datasets.Value("string"),
                            "head": {
                                "ref_id": datasets.Value("string"),
                                "role": datasets.Value("string"),
                            },
                            "tail": {
                                "ref_id": datasets.Value("string"),
                                "role": datasets.Value("string"),
                            },
                            "type": datasets.Value("string"),
                        }
                    ],
                    "equivalences": [  # Equiv line in brat
                        {
                            "id": datasets.Value("string"),
                            "ref_ids": datasets.Sequence(datasets.Value("string")),
                        }
                    ],
                    "attributes": [  # M or A lines in brat
                        {
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "ref_id": datasets.Value("string"),
                            "value": datasets.Value("string"),
                        }
                    ],
                    "normalizations": [  # N lines in brat
                        {
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "ref_id": datasets.Value("string"),
                            "resource_name": datasets.Value(
                                "string"
                            ),  # Name of the resource, e.g. "Wikipedia"
                            "cuid": datasets.Value(
                                "string"
                            ),  # ID in the resource, e.g. 534366
                            "text": datasets.Value(
                                "string"
                            ),  # Human readable description/name of the entity, e.g. "Barack Obama"
                        }
                    ],
                },
            )
        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(
        self, dl_manager: datasets.DownloadManager
    ) -> List[datasets.SplitGenerator]:
        data_files = dl_manager.download_and_extract(_URLs)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"data_files": dl_manager.iter_files(data_files["train"])},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"data_files": dl_manager.iter_files(data_files["validation"])},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"data_files": dl_manager.iter_files(data_files["test"])},
            ),
        ]

    def _generate_examples(self, data_files: Iterable[str]):
        if self.config.schema == "source":
            guid = 0
            for data_file in data_files:
                txt_file = Path(data_file)
                if txt_file.suffix != ".txt":
                    continue
                example = parse_brat_file(txt_file)
                example["id"] = str(guid)
                yield guid, example
                guid += 1
        elif self.config.schema == "bigbio_kb":
            guid = 0
            for data_file in data_files:
                txt_file = Path(data_file)
                if txt_file.suffix != ".txt":
                    continue
                example = brat_parse_to_bigbio_kb(
                    parse_brat_file(txt_file)
                )
                example["id"] = str(guid)
                yield guid, example
                guid += 1
        else:
            raise ValueError(f"Invalid config: {self.config.name}")