Datasets:

Languages:
English
ArXiv:
License:
biored / biored.py
gabrielaltay's picture
upload biored/biored.py to hub from bigbio repo
276d3b7
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Relation Extraction corpus with multiple entity types (e.g., gene/protein,
disease, chemical) and relation pairs (e.g., gene-disease; chemical-chemical),
on a set of 600 PubMed articles
"""
import itertools
import os
from collections import defaultdict
from typing import Dict, List, Tuple
import datasets
from bioc import pubtator
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ["English"]
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{DBLP:journals/corr/abs-2204-04263,
author = {Ling Luo and
Po{-}Ting Lai and
Chih{-}Hsuan Wei and
Cecilia N. Arighi and
Zhiyong Lu},
title = {BioRED: {A} Comprehensive Biomedical Relation Extraction Dataset},
journal = {CoRR},
volume = {abs/2204.04263},
year = {2022},
url = {https://doi.org/10.48550/arXiv.2204.04263},
doi = {10.48550/arXiv.2204.04263},
eprinttype = {arXiv},
eprint = {2204.04263},
timestamp = {Wed, 11 May 2022 15:24:37 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2204-04263.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DATASETNAME = "biored"
_DISPLAYNAME = "BioRED"
_DESCRIPTION = """\
Relation Extraction corpus with multiple entity types (e.g., gene/protein,
disease, chemical) and relation pairs (e.g., gene-disease; chemical-chemical),
on a set of 600 PubMed articles
"""
_HOMEPAGE = "https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/"
_LICENSE = "License information unavailable"
_URLS = {
_DATASETNAME: "https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/BIORED.zip",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION, Tasks.RELATION_EXTRACTION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
logger = datasets.utils.logging.get_logger(__name__)
class BioredDataset(datasets.GeneratorBasedBuilder):
"""Relation Extraction corpus with multiple entity types (e.g., gene/protein, disease, chemical) and
relation pairs (e.g., gene-disease; chemical-chemical), on a set of 600 PubMed articles"""
# For bigbio_kb, this dataset uses a naming convention as
# uid_[title/abstract/relation/entity_id]_[entity/relation_uid]
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name=_DATASETNAME + "_source",
version=SOURCE_VERSION,
description=_DATASETNAME + " source schema",
schema="source",
subset_id=_DATASETNAME,
),
BigBioConfig(
name=_DATASETNAME + "_bigbio_kb",
version=BIGBIO_VERSION,
description=_DATASETNAME + " BigBio schema",
schema="bigbio_kb",
subset_id=_DATASETNAME,
),
]
DEFAULT_CONFIG_NAME = _DATASETNAME + "_source"
TYPE_TO_DATABASE = {
"CellLine": "Cellosaurus",
"ChemicalEntity": "MESH",
"DiseaseOrPhenotypicFeature": "MESH", # Some diseases are normalized to OMIM (~ handled by special rules)
"GeneOrGeneProduct": "NCBIGene",
"OrganismTaxon": "NCBITaxon",
"SequenceVariant": "dbSNP", # Not all variants are normalized to dbSNP (~ handled by special rules)
}
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"pmid": datasets.Value("string"),
"passages": [
{
"type": datasets.Value("string"),
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
}
],
"entities": [
{
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
"concept_id": datasets.Value("string"),
"semantic_type_id": datasets.Value("string"),
}
],
"relations": [
{
"novel": datasets.Value("string"),
"type": datasets.Value("string"),
"concept_1": datasets.Value("string"),
"concept_2": datasets.Value("string"),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# Whatever you put in gen_kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, "BioRED", "Train.PubTator"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, "BioRED", "Test.PubTator"),
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(data_dir, "BioRED", "Dev.PubTator"),
"split": "dev",
},
),
]
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
if self.config.schema == "source":
with open(filepath, "r", encoding="utf8") as fstream:
for raw_document in self.generate_raw_docs(fstream):
document = self.parse_raw_doc(raw_document)
yield document["pmid"], document
elif self.config.schema == "bigbio_kb":
with open(filepath, "r", encoding="utf8") as fstream:
uid = itertools.count(0)
for raw_document in self.generate_raw_docs(fstream):
document = self.parse_raw_doc(raw_document)
pmid = str(document.pop("pmid"))
document["id"] = str(next(uid))
document["document_id"] = pmid
# Parse entities
entities = []
entity_id_to_mentions = defaultdict(list) # Maps database ids to mention ids
for i, entity in enumerate(document["entities"]):
internal_id = pmid + "_" + str(i)
# Some entities are normalized to multiple database ids, therefore we
# may have multiple identifiers per mention
normalized_entity_ids = []
for database_id in entity["concept_id"].split(","):
database_id = database_id.strip()
entity_type = entity["semantic_type_id"]
# First check special db_name and database id assignment rules
if entity_type == "DiseaseOrPhenotypicFeature" and database_id.lower().startswith("omim"):
db_name = "OMIM"
database_id = database_id.split(":")[-1]
elif entity_type == "SequenceVariant" and not database_id.startswith("rs"):
db_name = "custom"
# If no special rule applies -> just take the default db_name for the entity type
else:
db_name = self.TYPE_TO_DATABASE[entity_type]
normalized_entity_ids.append({"db_name": db_name, "db_id": database_id})
entity_id_to_mentions[database_id].append(internal_id)
entities.append(
{
"id": internal_id,
"type": entity_type,
"text": entity["text"],
"normalized": normalized_entity_ids,
"offsets": entity["offsets"],
}
)
# BioRed provides abstract-level annotations for entity-linked relation pairs rather than
# materializing links between all surface form mentions of relation. For example document 11009181
# in train has (Positive_Correlation, D007980, D004409). Analogous to BC5CDR we enumerate all
# mention pairs concerning the entities in the triple.
relations = []
rel_uid = itertools.count(0)
for relation in document["relations"]:
head_mentions = entity_id_to_mentions[str(relation["concept_1"])]
tail_mentions = entity_id_to_mentions[str(relation["concept_2"])]
for head, tail in itertools.product(head_mentions, tail_mentions):
relations.append(
{
"id": document["id"] + "_relation_" + str(next(rel_uid)),
"type": relation["type"],
"arg1_id": head,
"arg2_id": tail,
"normalized": [],
}
)
for passage in document["passages"]:
passage["id"] = document["id"] + "_" + passage["type"]
document["entities"] = entities
document["relations"] = relations
document["events"] = []
document["coreferences"] = []
yield document["document_id"], document
def generate_raw_docs(self, fstream):
"""
Given a filestream, this function yields documents from it
"""
raw_document = []
for line in fstream:
if line.strip():
raw_document.append(line.strip())
elif raw_document:
yield raw_document
raw_document = []
if raw_document:
yield raw_document
def parse_raw_doc(self, raw_doc):
pmid, _, title = raw_doc[0].split("|")
pmid = int(pmid)
_, _, abstract = raw_doc[1].split("|")
passages = [
{"type": "title", "text": [title], "offsets": [[0, len(title)]]},
{
"type": "abstract",
"text": [abstract],
"offsets": [[len(title) + 1, len(title) + len(abstract) + 1]],
},
]
entities = []
relations = []
for line in raw_doc[2:]:
mentions = line.split("\t")
(_pmid, _type_ind, *rest) = mentions
if _type_ind in [
"Positive_Correlation",
"Association",
"Negative_Correlation",
"Bind",
"Conversion",
"Cotreatment",
"Cause",
"Comparison",
"Drug_Interaction",
]:
# Relations handled here
relation_type = _type_ind
concept_1, concept_2, novel = rest
relation = {
"type": relation_type,
"concept_1": concept_1,
"concept_2": concept_2,
"novel": novel,
}
relations.append(relation)
elif _type_ind.isnumeric():
# Entities handled here
start_idx = _type_ind
end_idx, mention, semantic_type_id, entity_ids = rest
entities.append(
{
"offsets": [[int(start_idx), int(end_idx)]],
"text": [mention],
"semantic_type_id": semantic_type_id,
"concept_id": entity_ids,
}
)
else:
logger.warn(f"Skipping annotation in Document ID: {_pmid}. Unexpected format")
return {
"pmid": pmid,
"passages": passages,
"entities": entities,
"relations": relations,
}