|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Relation Extraction corpus with multiple entity types (e.g., gene/protein, |
|
disease, chemical) and relation pairs (e.g., gene-disease; chemical-chemical), |
|
on a set of 600 PubMed articles |
|
""" |
|
|
|
import itertools |
|
import os |
|
from collections import defaultdict |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from bioc import pubtator |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ["English"] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{DBLP:journals/corr/abs-2204-04263, |
|
author = {Ling Luo and |
|
Po{-}Ting Lai and |
|
Chih{-}Hsuan Wei and |
|
Cecilia N. Arighi and |
|
Zhiyong Lu}, |
|
title = {BioRED: {A} Comprehensive Biomedical Relation Extraction Dataset}, |
|
journal = {CoRR}, |
|
volume = {abs/2204.04263}, |
|
year = {2022}, |
|
url = {https://doi.org/10.48550/arXiv.2204.04263}, |
|
doi = {10.48550/arXiv.2204.04263}, |
|
eprinttype = {arXiv}, |
|
eprint = {2204.04263}, |
|
timestamp = {Wed, 11 May 2022 15:24:37 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2204-04263.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "biored" |
|
_DISPLAYNAME = "BioRED" |
|
|
|
_DESCRIPTION = """\ |
|
Relation Extraction corpus with multiple entity types (e.g., gene/protein, |
|
disease, chemical) and relation pairs (e.g., gene-disease; chemical-chemical), |
|
on a set of 600 PubMed articles |
|
""" |
|
|
|
_HOMEPAGE = "https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/" |
|
|
|
_LICENSE = "License information unavailable" |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/BIORED.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION, Tasks.RELATION_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
logger = datasets.utils.logging.get_logger(__name__) |
|
|
|
|
|
class BioredDataset(datasets.GeneratorBasedBuilder): |
|
"""Relation Extraction corpus with multiple entity types (e.g., gene/protein, disease, chemical) and |
|
relation pairs (e.g., gene-disease; chemical-chemical), on a set of 600 PubMed articles""" |
|
|
|
|
|
|
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name=_DATASETNAME + "_source", |
|
version=SOURCE_VERSION, |
|
description=_DATASETNAME + " source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
BigBioConfig( |
|
name=_DATASETNAME + "_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description=_DATASETNAME + " BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = _DATASETNAME + "_source" |
|
|
|
TYPE_TO_DATABASE = { |
|
"CellLine": "Cellosaurus", |
|
"ChemicalEntity": "MESH", |
|
"DiseaseOrPhenotypicFeature": "MESH", |
|
"GeneOrGeneProduct": "NCBIGene", |
|
"OrganismTaxon": "NCBITaxon", |
|
"SequenceVariant": "dbSNP", |
|
} |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
|
|
features = datasets.Features( |
|
{ |
|
"pmid": datasets.Value("string"), |
|
"passages": [ |
|
{ |
|
"type": datasets.Value("string"), |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
} |
|
], |
|
"entities": [ |
|
{ |
|
"text": datasets.Sequence(datasets.Value("string")), |
|
"offsets": datasets.Sequence([datasets.Value("int32")]), |
|
"concept_id": datasets.Value("string"), |
|
"semantic_type_id": datasets.Value("string"), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"novel": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"concept_1": datasets.Value("string"), |
|
"concept_2": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "BioRED", "Train.PubTator"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "BioRED", "Test.PubTator"), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "BioRED", "Dev.PubTator"), |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
with open(filepath, "r", encoding="utf8") as fstream: |
|
for raw_document in self.generate_raw_docs(fstream): |
|
document = self.parse_raw_doc(raw_document) |
|
yield document["pmid"], document |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
with open(filepath, "r", encoding="utf8") as fstream: |
|
uid = itertools.count(0) |
|
for raw_document in self.generate_raw_docs(fstream): |
|
document = self.parse_raw_doc(raw_document) |
|
pmid = str(document.pop("pmid")) |
|
document["id"] = str(next(uid)) |
|
document["document_id"] = pmid |
|
|
|
|
|
entities = [] |
|
entity_id_to_mentions = defaultdict(list) |
|
for i, entity in enumerate(document["entities"]): |
|
internal_id = pmid + "_" + str(i) |
|
|
|
|
|
|
|
normalized_entity_ids = [] |
|
for database_id in entity["concept_id"].split(","): |
|
database_id = database_id.strip() |
|
entity_type = entity["semantic_type_id"] |
|
|
|
|
|
if entity_type == "DiseaseOrPhenotypicFeature" and database_id.lower().startswith("omim"): |
|
db_name = "OMIM" |
|
database_id = database_id.split(":")[-1] |
|
elif entity_type == "SequenceVariant" and not database_id.startswith("rs"): |
|
db_name = "custom" |
|
|
|
|
|
else: |
|
db_name = self.TYPE_TO_DATABASE[entity_type] |
|
|
|
normalized_entity_ids.append({"db_name": db_name, "db_id": database_id}) |
|
entity_id_to_mentions[database_id].append(internal_id) |
|
|
|
entities.append( |
|
{ |
|
"id": internal_id, |
|
"type": entity_type, |
|
"text": entity["text"], |
|
"normalized": normalized_entity_ids, |
|
"offsets": entity["offsets"], |
|
} |
|
) |
|
|
|
|
|
|
|
|
|
|
|
relations = [] |
|
rel_uid = itertools.count(0) |
|
for relation in document["relations"]: |
|
head_mentions = entity_id_to_mentions[str(relation["concept_1"])] |
|
tail_mentions = entity_id_to_mentions[str(relation["concept_2"])] |
|
|
|
for head, tail in itertools.product(head_mentions, tail_mentions): |
|
relations.append( |
|
{ |
|
"id": document["id"] + "_relation_" + str(next(rel_uid)), |
|
"type": relation["type"], |
|
"arg1_id": head, |
|
"arg2_id": tail, |
|
"normalized": [], |
|
} |
|
) |
|
|
|
for passage in document["passages"]: |
|
passage["id"] = document["id"] + "_" + passage["type"] |
|
|
|
document["entities"] = entities |
|
document["relations"] = relations |
|
document["events"] = [] |
|
document["coreferences"] = [] |
|
|
|
yield document["document_id"], document |
|
|
|
def generate_raw_docs(self, fstream): |
|
""" |
|
Given a filestream, this function yields documents from it |
|
""" |
|
raw_document = [] |
|
for line in fstream: |
|
if line.strip(): |
|
raw_document.append(line.strip()) |
|
elif raw_document: |
|
yield raw_document |
|
raw_document = [] |
|
if raw_document: |
|
yield raw_document |
|
|
|
def parse_raw_doc(self, raw_doc): |
|
pmid, _, title = raw_doc[0].split("|") |
|
pmid = int(pmid) |
|
_, _, abstract = raw_doc[1].split("|") |
|
passages = [ |
|
{"type": "title", "text": [title], "offsets": [[0, len(title)]]}, |
|
{ |
|
"type": "abstract", |
|
"text": [abstract], |
|
"offsets": [[len(title) + 1, len(title) + len(abstract) + 1]], |
|
}, |
|
] |
|
entities = [] |
|
relations = [] |
|
for line in raw_doc[2:]: |
|
mentions = line.split("\t") |
|
(_pmid, _type_ind, *rest) = mentions |
|
if _type_ind in [ |
|
"Positive_Correlation", |
|
"Association", |
|
"Negative_Correlation", |
|
"Bind", |
|
"Conversion", |
|
"Cotreatment", |
|
"Cause", |
|
"Comparison", |
|
"Drug_Interaction", |
|
]: |
|
|
|
relation_type = _type_ind |
|
concept_1, concept_2, novel = rest |
|
relation = { |
|
"type": relation_type, |
|
"concept_1": concept_1, |
|
"concept_2": concept_2, |
|
"novel": novel, |
|
} |
|
relations.append(relation) |
|
elif _type_ind.isnumeric(): |
|
|
|
start_idx = _type_ind |
|
end_idx, mention, semantic_type_id, entity_ids = rest |
|
entities.append( |
|
{ |
|
"offsets": [[int(start_idx), int(end_idx)]], |
|
"text": [mention], |
|
"semantic_type_id": semantic_type_id, |
|
"concept_id": entity_ids, |
|
} |
|
) |
|
else: |
|
logger.warn(f"Skipping annotation in Document ID: {_pmid}. Unexpected format") |
|
return { |
|
"pmid": pmid, |
|
"passages": passages, |
|
"entities": entities, |
|
"relations": relations, |
|
} |
|
|