|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
BioRelEx is a biological relation extraction dataset. Version 1.0 contains 2010 |
|
annotated sentences that describe binding interactions between various |
|
biological entities (proteins, chemicals, etc.). 1405 sentences are for |
|
training, another 201 sentences are for validation. They are publicly available |
|
at https://github.com/YerevaNN/BioRelEx/releases. Another 404 sentences are for |
|
testing which are kept private for at this Codalab competition |
|
https://competitions.codalab.org/competitions/20468. All sentences contain words |
|
"bind", "bound" or "binding". For every sentence we provide: 1) Complete |
|
annotations of all biological entities that appear in the sentence 2) Entity |
|
types (32 types) and grounding information for most of the proteins and families |
|
(links to uniprot, interpro and other databases) 3) Coreference between entities |
|
in the same sentence (e.g. abbreviations and synonyms) 4) Binding interactions |
|
between the annotated entities 5) Binding interaction types: positive, negative |
|
(A does not bind B) and neutral (A may bind to B) |
|
""" |
|
|
|
import itertools as it |
|
import json |
|
from collections import defaultdict |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{khachatrian2019biorelex, |
|
title = "{B}io{R}el{E}x 1.0: Biological Relation Extraction Benchmark", |
|
author = "Khachatrian, Hrant and |
|
Nersisyan, Lilit and |
|
Hambardzumyan, Karen and |
|
Galstyan, Tigran and |
|
Hakobyan, Anna and |
|
Arakelyan, Arsen and |
|
Rzhetsky, Andrey and |
|
Galstyan, Aram", |
|
booktitle = "Proceedings of the 18th BioNLP Workshop and Shared Task", |
|
month = aug, |
|
year = "2019", |
|
address = "Florence, Italy", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/W19-5019", |
|
doi = "10.18653/v1/W19-5019", |
|
pages = "176--190" |
|
} |
|
""" |
|
|
|
_DATASETNAME = "biorelex" |
|
_DISPLAYNAME = "BioRelEx" |
|
|
|
_DESCRIPTION = """\ |
|
BioRelEx is a biological relation extraction dataset. Version 1.0 contains 2010 |
|
annotated sentences that describe binding interactions between various |
|
biological entities (proteins, chemicals, etc.). 1405 sentences are for |
|
training, another 201 sentences are for validation. They are publicly available |
|
at https://github.com/YerevaNN/BioRelEx/releases. Another 404 sentences are for |
|
testing which are kept private for at this Codalab competition |
|
https://competitions.codalab.org/competitions/20468. All sentences contain words |
|
"bind", "bound" or "binding". For every sentence we provide: 1) Complete |
|
annotations of all biological entities that appear in the sentence 2) Entity |
|
types (32 types) and grounding information for most of the proteins and families |
|
(links to uniprot, interpro and other databases) 3) Coreference between entities |
|
in the same sentence (e.g. abbreviations and synonyms) 4) Binding interactions |
|
between the annotated entities 5) Binding interaction types: positive, negative |
|
(A does not bind B) and neutral (A may bind to B)""" |
|
|
|
_HOMEPAGE = "https://github.com/YerevaNN/BioRelEx" |
|
|
|
_LICENSE = 'License information unavailable' |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "https://github.com/YerevaNN/BioRelEx/releases/download/1.0alpha7/1.0alpha7.train.json", |
|
"dev": "https://github.com/YerevaNN/BioRelEx/releases/download/1.0alpha7/1.0alpha7.dev.json", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [ |
|
Tasks.NAMED_ENTITY_RECOGNITION, |
|
Tasks.NAMED_ENTITY_DISAMBIGUATION, |
|
Tasks.RELATION_EXTRACTION, |
|
Tasks.COREFERENCE_RESOLUTION, |
|
] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class BioRelExDataset(datasets.GeneratorBasedBuilder): |
|
"""BioRelEx is a biological relation extraction dataset.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="biorelex_source", |
|
version=SOURCE_VERSION, |
|
description="BioRelEx source schema", |
|
schema="source", |
|
subset_id="biorelex", |
|
), |
|
BigBioConfig( |
|
name="biorelex_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="BioRelEx BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="biorelex", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "biorelex_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"paperid": datasets.Value("string"), |
|
"interactions": [ |
|
{ |
|
"participants": datasets.Sequence(datasets.Value("int32")), |
|
"type": datasets.Value("string"), |
|
"implicit": datasets.Value("bool"), |
|
"label": datasets.Value("int32"), |
|
} |
|
], |
|
"url": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"is_state": datasets.Value("bool"), |
|
"label": datasets.Value("string"), |
|
"names": [ |
|
{ |
|
"text": datasets.Value("string"), |
|
"is_mentioned": datasets.Value("bool"), |
|
"mentions": datasets.Sequence( |
|
[datasets.Value("int32")] |
|
), |
|
} |
|
], |
|
"grounding": [ |
|
{ |
|
"comment": datasets.Value("string"), |
|
"entrez_gene": datasets.Value("string"), |
|
"source": datasets.Value("string"), |
|
"link": datasets.Value("string"), |
|
"hgnc_symbol": datasets.Value("string"), |
|
"organism": datasets.Value("string"), |
|
} |
|
], |
|
"is_mentioned": datasets.Value("bool"), |
|
"is_mutant": datasets.Value("bool"), |
|
} |
|
], |
|
"_line_": datasets.Value("int32"), |
|
"id": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["dev"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(filepath, "r", encoding="utf8") as f: |
|
data = json.load(f) |
|
data = self._prep(data) |
|
|
|
if self.config.schema == "source": |
|
for key, example in enumerate(data): |
|
yield key, example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for key, example in enumerate(data): |
|
example_ = self._source_to_kb(example) |
|
yield key, example_ |
|
|
|
def _prep(self, data): |
|
for example in data: |
|
for entity in example["entities"]: |
|
entity["names"] = self._json_dict_to_list(entity["names"], "text") |
|
if entity["grounding"] is None: |
|
entity["grounding"] = [] |
|
else: |
|
entity["grounding"] = [entity["grounding"]] |
|
return data |
|
|
|
def _json_dict_to_list(self, json, new_key): |
|
list_ = [] |
|
for key, values in json.items(): |
|
assert isinstance(values, dict), "Child element is not a dict" |
|
assert new_key not in values, "New key already in values" |
|
values[new_key] = key |
|
list_.append(values) |
|
return list_ |
|
|
|
def _source_to_kb(self, example): |
|
example_id = example["id"] |
|
entities_, corefs_, ref_id_map = self._get_entities( |
|
example_id, example["entities"] |
|
) |
|
relations_ = self._get_relations( |
|
example_id, ref_id_map, example["interactions"] |
|
) |
|
|
|
document_ = { |
|
"id": example_id, |
|
"document_id": example["paperid"], |
|
"passages": [ |
|
{ |
|
"id": example_id + ".sent", |
|
"type": "sentence", |
|
"text": [example["text"]], |
|
"offsets": [[0, len(example["text"])]], |
|
} |
|
], |
|
"entities": entities_, |
|
"coreferences": corefs_, |
|
"relations": relations_, |
|
"events": [], |
|
} |
|
return document_ |
|
|
|
def _get_entities(self, example_id, entities): |
|
entities_ = [] |
|
corefs_ = [] |
|
|
|
eid = it.count(0) |
|
cid = it.count(0) |
|
|
|
org_rel_ref_id_2_kb_entity_id = defaultdict(list) |
|
|
|
for relation_ref_id, entity in enumerate(entities): |
|
|
|
|
|
normalized_ = self._get_normalizations(entity) |
|
|
|
|
|
coref_eids_ = [] |
|
for names in entity["names"]: |
|
for id, mention in enumerate(names["mentions"]): |
|
entity_id = example_id + ".ent" + str(next(eid)) + "_" + str(id) |
|
org_rel_ref_id_2_kb_entity_id[relation_ref_id].append(entity_id) |
|
coref_eids_.append(entity_id) |
|
entities_.append( |
|
{ |
|
"id": entity_id, |
|
"type": entity["label"], |
|
"text": [names["text"]], |
|
"offsets": [mention], |
|
"normalized": normalized_, |
|
} |
|
) |
|
|
|
|
|
coref_id = example_id + ".coref" + str(next(cid)) |
|
corefs_.append( |
|
{ |
|
"id": coref_id, |
|
"entity_ids": coref_eids_, |
|
} |
|
) |
|
return entities_, corefs_, org_rel_ref_id_2_kb_entity_id |
|
|
|
def _get_normalizations(self, entity): |
|
normalized_ = [] |
|
if entity["grounding"]: |
|
assert len(entity["grounding"]) == 1 |
|
if entity["grounding"][0]["entrez_gene"] != "NA": |
|
normalized_.append( |
|
{ |
|
"db_name": "NCBI gene", |
|
"db_id": entity["grounding"][0]["entrez_gene"], |
|
} |
|
) |
|
if entity["grounding"][0]["hgnc_symbol"] != "NA": |
|
normalized_.append( |
|
{"db_name": "hgnc", "db_id": entity["grounding"][0]["hgnc_symbol"]} |
|
) |
|
|
|
|
|
source = entity["grounding"][0]["source"] |
|
if ( |
|
source != "NCBI gene" |
|
and source != "https://www.genenames.org/data/genegroup/" |
|
): |
|
normalized_.append( |
|
self._parse_id_from_link( |
|
entity["grounding"][0]["link"], entity["grounding"][0]["source"] |
|
) |
|
) |
|
return normalized_ |
|
|
|
def _get_relations(self, example_id, org_rel_ref_id_2_kb_entity_id, interactions): |
|
rid = it.count(0) |
|
relations_ = [] |
|
for interaction in interactions: |
|
rel_id = example_id + ".rel" + str(next(rid)) |
|
assert len(interaction["participants"]) == 2 |
|
|
|
subjects = org_rel_ref_id_2_kb_entity_id[interaction["participants"][0]] |
|
objects = org_rel_ref_id_2_kb_entity_id[interaction["participants"][1]] |
|
|
|
for s in subjects: |
|
for o in objects: |
|
relations_.append( |
|
{ |
|
"id": rel_id + "s" + s + ".o" + o, |
|
"type": interaction["type"], |
|
"arg1_id": s, |
|
"arg2_id": o, |
|
"normalized": [], |
|
} |
|
) |
|
return relations_ |
|
|
|
def _parse_id_from_link(self, link, source): |
|
source_template_map = { |
|
"uniprot": ["https://www.uniprot.org/uniprot/"], |
|
"pubchem:compound": ["https://pubchem.ncbi.nlm.nih.gov/compound/"], |
|
"pubchem:substance": ["https://pubchem.ncbi.nlm.nih.gov/substance/"], |
|
"pfam": ["https://pfam.xfam.org/family/", "http://pfam.xfam.org/family/"], |
|
"interpro": [ |
|
"http://www.ebi.ac.uk/interpro/entry/", |
|
"https://www.ebi.ac.uk/interpro/entry/", |
|
], |
|
"DrugBank": ["https://www.drugbank.ca/drugs/"], |
|
} |
|
|
|
|
|
if source == "https://enzyme.expasy.org/EC/2.5.1.18" and link == source: |
|
return {"db_name": "intenz", "db_id": "2.5.1.18"} |
|
elif ( |
|
source == "https://www.genome.jp/kegg-bin/show_pathway?map=ko04120" |
|
and link == source |
|
): |
|
return {"db_name": "kegg", "db_id": "ko04120"} |
|
elif ( |
|
source == "https://www.genome.jp/dbget-bin/www_bget?enzyme+2.7.11.1" |
|
and link == source |
|
): |
|
return {"db_name": "intenz", "db_id": "2.7.11.1"} |
|
elif ( |
|
source == "http://www.chemspider.com/Chemical-Structure.7995676.html" |
|
and link == source |
|
): |
|
return {"db_name": "chemspider", "db_id": "7995676"} |
|
elif source == "intenz": |
|
id = link.split("=")[0] |
|
return {"db_name": source, "db_id": id} |
|
else: |
|
link_templates = source_template_map[source] |
|
for template in link_templates: |
|
if link.startswith(template): |
|
id = link.replace(template, "") |
|
id = id.split("?")[0] |
|
assert "/" not in id |
|
return {"db_name": source, "db_id": id} |
|
|
|
assert ( |
|
False |
|
), f"No template found for {link}, choices: {repr(link_templates)}" |
|
|