Commit
·
b95f4ec
1
Parent(s):
e33226d
upload hubscripts/bioscope_hub.py to hub from bigbio repo
Browse files- bioscope.py +332 -0
bioscope.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
BioScope
|
18 |
+
---
|
19 |
+
The corpus consists of three parts, namely medical free texts, biological full
|
20 |
+
papers and biological scientific abstracts. The dataset contains annotations at
|
21 |
+
the token level for negative and speculative keywords and at the sentence level
|
22 |
+
for their linguistic scope. The annotation process was carried out by two
|
23 |
+
independent linguist annotators and a chief linguist - also responsible for
|
24 |
+
setting up the annotation guidelines - who resolved cases where the annotators
|
25 |
+
disagreed. The resulting corpus consists of more than 20.000 sentences that were
|
26 |
+
considered for annotation and over 10% of them actually contain one (or more)
|
27 |
+
linguistic annotation suggesting negation or uncertainty.
|
28 |
+
"""
|
29 |
+
|
30 |
+
import os
|
31 |
+
import re
|
32 |
+
import xml.etree.ElementTree as ET
|
33 |
+
from pathlib import Path
|
34 |
+
from typing import Dict, List, Tuple
|
35 |
+
|
36 |
+
import datasets
|
37 |
+
|
38 |
+
from .bigbiohub import kb_features
|
39 |
+
from .bigbiohub import BigBioConfig
|
40 |
+
from .bigbiohub import Tasks
|
41 |
+
|
42 |
+
_LANGUAGES = ['English']
|
43 |
+
_PUBMED = True
|
44 |
+
_LOCAL = False
|
45 |
+
_CITATION = """\
|
46 |
+
@article{vincze2008bioscope,
|
47 |
+
title={The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes},
|
48 |
+
author={Vincze, Veronika and Szarvas, Gy{\"o}rgy and Farkas, Rich{\'a}rd and M{\'o}ra, Gy{\"o}rgy and Csirik, J{\'a}nos},
|
49 |
+
journal={BMC bioinformatics},
|
50 |
+
volume={9},
|
51 |
+
number={11},
|
52 |
+
pages={1--9},
|
53 |
+
year={2008},
|
54 |
+
publisher={BioMed Central}
|
55 |
+
}
|
56 |
+
"""
|
57 |
+
|
58 |
+
_DATASETNAME = "bioscope"
|
59 |
+
_DISPLAYNAME = "BioScope"
|
60 |
+
|
61 |
+
|
62 |
+
_DESCRIPTION = """\
|
63 |
+
The BioScope corpus consists of medical and biological texts annotated for
|
64 |
+
negation, speculation and their linguistic scope. This was done to allow a
|
65 |
+
comparison between the development of systems for negation/hedge detection and
|
66 |
+
scope resolution. The BioScope corpus was annotated by two independent linguists
|
67 |
+
following the guidelines written by our linguist expert before the annotation of
|
68 |
+
the corpus was initiated.
|
69 |
+
"""
|
70 |
+
|
71 |
+
_HOMEPAGE = "https://rgai.inf.u-szeged.hu/node/105"
|
72 |
+
|
73 |
+
_LICENSE = 'Creative Commons Attribution 2.0 Generic'
|
74 |
+
|
75 |
+
_URLS = {
|
76 |
+
_DATASETNAME: "https://rgai.sed.hu/sites/rgai.sed.hu/files/bioscope.zip",
|
77 |
+
}
|
78 |
+
|
79 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
80 |
+
|
81 |
+
_SOURCE_VERSION = "1.0.0"
|
82 |
+
|
83 |
+
_BIGBIO_VERSION = "1.0.0"
|
84 |
+
|
85 |
+
|
86 |
+
class BioscopeDataset(datasets.GeneratorBasedBuilder):
|
87 |
+
"""The BioScope corpus consists of medical and biological texts annotated for negation, speculation and their linguistic scope."""
|
88 |
+
|
89 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
90 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
91 |
+
|
92 |
+
BUILDER_CONFIGS = [
|
93 |
+
BigBioConfig(
|
94 |
+
name="bioscope_source",
|
95 |
+
version=SOURCE_VERSION,
|
96 |
+
description="bioscope source schema",
|
97 |
+
schema="source",
|
98 |
+
subset_id="bioscope",
|
99 |
+
),
|
100 |
+
BigBioConfig(
|
101 |
+
name="bioscope_abstracts_source",
|
102 |
+
version=SOURCE_VERSION,
|
103 |
+
description="bioscope source schema",
|
104 |
+
schema="source",
|
105 |
+
subset_id="bioscope_abstracts",
|
106 |
+
),
|
107 |
+
BigBioConfig(
|
108 |
+
name="bioscope_papers_source",
|
109 |
+
version=SOURCE_VERSION,
|
110 |
+
description="bioscope source schema",
|
111 |
+
schema="source",
|
112 |
+
subset_id="bioscope_papers",
|
113 |
+
),
|
114 |
+
BigBioConfig(
|
115 |
+
name="bioscope_medical_texts_source",
|
116 |
+
version=SOURCE_VERSION,
|
117 |
+
description="bioscope source schema",
|
118 |
+
schema="source",
|
119 |
+
subset_id="bioscope_medical_texts",
|
120 |
+
),
|
121 |
+
BigBioConfig(
|
122 |
+
name="bioscope_bigbio_kb",
|
123 |
+
version=BIGBIO_VERSION,
|
124 |
+
description="bioscope BigBio schema",
|
125 |
+
schema="bigbio_kb",
|
126 |
+
subset_id="bioscope",
|
127 |
+
),
|
128 |
+
BigBioConfig(
|
129 |
+
name="bioscope_abstracts_bigbio_kb",
|
130 |
+
version=BIGBIO_VERSION,
|
131 |
+
description="bioscope BigBio schema",
|
132 |
+
schema="bigbio_kb",
|
133 |
+
subset_id="bioscope_abstracts",
|
134 |
+
),
|
135 |
+
BigBioConfig(
|
136 |
+
name="bioscope_papers_bigbio_kb",
|
137 |
+
version=BIGBIO_VERSION,
|
138 |
+
description="bioscope BigBio schema",
|
139 |
+
schema="bigbio_kb",
|
140 |
+
subset_id="bioscope_papers",
|
141 |
+
),
|
142 |
+
BigBioConfig(
|
143 |
+
name="bioscope_medical_texts_bigbio_kb",
|
144 |
+
version=BIGBIO_VERSION,
|
145 |
+
description="bioscope BigBio schema",
|
146 |
+
schema="bigbio_kb",
|
147 |
+
subset_id="bioscope_medical_texts",
|
148 |
+
),
|
149 |
+
]
|
150 |
+
|
151 |
+
DEFAULT_CONFIG_NAME = "bioscope_source"
|
152 |
+
|
153 |
+
def _info(self) -> datasets.DatasetInfo:
|
154 |
+
|
155 |
+
if self.config.schema == "source":
|
156 |
+
features = datasets.Features(
|
157 |
+
{
|
158 |
+
"document_id": datasets.Value("string"),
|
159 |
+
"document_type": datasets.Value("string"),
|
160 |
+
"text": datasets.Value("string"),
|
161 |
+
"entities": [
|
162 |
+
{
|
163 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
164 |
+
"text": datasets.Value("string"),
|
165 |
+
"type": datasets.Value("string"),
|
166 |
+
"id": datasets.Value("string"),
|
167 |
+
"normalized": [
|
168 |
+
{
|
169 |
+
"db_name": datasets.Value("string"),
|
170 |
+
"db_id": datasets.Value("string"),
|
171 |
+
}
|
172 |
+
],
|
173 |
+
}
|
174 |
+
],
|
175 |
+
}
|
176 |
+
)
|
177 |
+
|
178 |
+
elif self.config.schema == "bigbio_kb":
|
179 |
+
features = kb_features
|
180 |
+
|
181 |
+
return datasets.DatasetInfo(
|
182 |
+
description=_DESCRIPTION,
|
183 |
+
features=features,
|
184 |
+
homepage=_HOMEPAGE,
|
185 |
+
license=str(_LICENSE),
|
186 |
+
citation=_CITATION,
|
187 |
+
)
|
188 |
+
|
189 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
190 |
+
"""Returns SplitGenerators."""
|
191 |
+
urls = _URLS[_DATASETNAME]
|
192 |
+
data_dir = dl_manager.download_and_extract(urls)
|
193 |
+
|
194 |
+
return [
|
195 |
+
datasets.SplitGenerator(
|
196 |
+
name=datasets.Split.TRAIN,
|
197 |
+
gen_kwargs={
|
198 |
+
"data_files": data_dir,
|
199 |
+
},
|
200 |
+
)
|
201 |
+
]
|
202 |
+
|
203 |
+
def _generate_examples(self, data_files: Path) -> Tuple[int, Dict]:
|
204 |
+
"""Yields examples as (key, example) tuples."""
|
205 |
+
sentences = self._load_sentences(data_files)
|
206 |
+
if self.config.schema == "source":
|
207 |
+
for guid, sentence_tuple in enumerate(sentences):
|
208 |
+
document_type, sentence = sentence_tuple
|
209 |
+
example = self._create_example(sentence_tuple)
|
210 |
+
example["document_type"] = f"{document_type}_{sentence.attrib['id']}"
|
211 |
+
example["text"] = "".join(sentence_tuple[1].itertext())
|
212 |
+
yield guid, example
|
213 |
+
|
214 |
+
elif self.config.schema == "bigbio_kb":
|
215 |
+
for guid, sentence_tuple in enumerate(sentences):
|
216 |
+
document_type, sentence = sentence_tuple
|
217 |
+
example = self._create_example(sentence_tuple)
|
218 |
+
example["id"] = guid
|
219 |
+
example["passages"] = [
|
220 |
+
{
|
221 |
+
"id": f"{document_type}_{sentence.attrib['id']}",
|
222 |
+
"type": document_type,
|
223 |
+
"text": ["".join(sentence.itertext())],
|
224 |
+
"offsets": [(0, len("".join(sentence.itertext())))],
|
225 |
+
}
|
226 |
+
]
|
227 |
+
example["events"] = []
|
228 |
+
example["coreferences"] = []
|
229 |
+
example["relations"] = []
|
230 |
+
yield guid, example
|
231 |
+
|
232 |
+
def _load_sentences(self, data_files: Path) -> List:
|
233 |
+
"""
|
234 |
+
Returns a list of tuples (Document type, iterator from dataset)
|
235 |
+
"""
|
236 |
+
if self.config.subset_id.__contains__("abstracts"):
|
237 |
+
sentences = self._concat_iterators(
|
238 |
+
(
|
239 |
+
"Abstract",
|
240 |
+
ET.parse(os.path.join(data_files, "abstracts.xml"))
|
241 |
+
.getroot()
|
242 |
+
.iter("sentence"),
|
243 |
+
)
|
244 |
+
)
|
245 |
+
elif self.config.subset_id.__contains__("papers"):
|
246 |
+
sentences = self._concat_iterators(
|
247 |
+
(
|
248 |
+
"Paper",
|
249 |
+
ET.parse(os.path.join(data_files, "full_papers.xml"))
|
250 |
+
.getroot()
|
251 |
+
.iter("sentence"),
|
252 |
+
)
|
253 |
+
)
|
254 |
+
elif self.config.subset_id.__contains__("medical_texts"):
|
255 |
+
sentences = self._concat_iterators(
|
256 |
+
(
|
257 |
+
"Medical text",
|
258 |
+
ET.parse(
|
259 |
+
os.path.join(
|
260 |
+
data_files, "clinical_merger/clinical_records_anon.xml"
|
261 |
+
)
|
262 |
+
)
|
263 |
+
.getroot()
|
264 |
+
.iter("sentence"),
|
265 |
+
)
|
266 |
+
)
|
267 |
+
else:
|
268 |
+
abstracts = (
|
269 |
+
ET.parse(os.path.join(data_files, "abstracts.xml"))
|
270 |
+
.getroot()
|
271 |
+
.iter("sentence")
|
272 |
+
)
|
273 |
+
papers = (
|
274 |
+
ET.parse(os.path.join(data_files, "full_papers.xml"))
|
275 |
+
.getroot()
|
276 |
+
.iter("sentence")
|
277 |
+
)
|
278 |
+
medical_texts = (
|
279 |
+
ET.parse(
|
280 |
+
os.path.join(
|
281 |
+
data_files, "clinical_merger/clinical_records_anon.xml"
|
282 |
+
)
|
283 |
+
)
|
284 |
+
.getroot()
|
285 |
+
.iter("sentence")
|
286 |
+
)
|
287 |
+
sentences = self._concat_iterators(
|
288 |
+
("Abstract", abstracts),
|
289 |
+
("Paper", papers),
|
290 |
+
("Medical text", medical_texts),
|
291 |
+
)
|
292 |
+
return sentences
|
293 |
+
|
294 |
+
@staticmethod
|
295 |
+
def _concat_iterators(*iterator_tuple):
|
296 |
+
for document_type, iterator in iterator_tuple:
|
297 |
+
for element in iterator:
|
298 |
+
yield document_type, element
|
299 |
+
|
300 |
+
def _create_example(self, sentence_tuple):
|
301 |
+
document_type, sentence = sentence_tuple
|
302 |
+
document_type_prefix = document_type[0]
|
303 |
+
|
304 |
+
example = {}
|
305 |
+
example["document_id"] = f"{document_type_prefix}_{sentence.attrib['id']}"
|
306 |
+
example["entities"] = self._extract_entities(sentence, document_type_prefix)
|
307 |
+
return example
|
308 |
+
|
309 |
+
def _extract_entities(self, sentence, document_type_prefix):
|
310 |
+
text = "".join(sentence.itertext())
|
311 |
+
entities = []
|
312 |
+
xcopes = dict([(xcope.attrib["id"], xcope) for xcope in sentence.iter("xcope")])
|
313 |
+
cues = dict([(cue.attrib["ref"], cue) for cue in sentence.iter("cue")])
|
314 |
+
for idx, xcope in xcopes.items():
|
315 |
+
# X2.140.2 has no annotation in raw data
|
316 |
+
if cues.get(idx) is None:
|
317 |
+
continue
|
318 |
+
entities.append(
|
319 |
+
{
|
320 |
+
"id": f"{document_type_prefix}_{idx}",
|
321 |
+
"type": cues.get(idx).attrib["type"],
|
322 |
+
"text": ["".join(xcope.itertext())],
|
323 |
+
"offsets": self._extract_offsets(
|
324 |
+
text=text, entity_text="".join(xcope.itertext())
|
325 |
+
),
|
326 |
+
"normalized": [],
|
327 |
+
}
|
328 |
+
)
|
329 |
+
return entities
|
330 |
+
|
331 |
+
def _extract_offsets(self, text, entity_text):
|
332 |
+
return [(text.find(entity_text), text.find(entity_text) + len(entity_text))]
|