Datasets:

Languages:
Spanish
License:
File size: 10,521 Bytes
1071014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
The Clinical Trials for Evidence-Based Medicine in Spanish (CT-EBM-SP) Corpus
gathers 1200 texts about clinical trial studies for NER; this resource contains
500 abstracts of journal articles about clinical trials and 700 announcements
of trial protocols (292 173 tokens), with 46 699 annotated entities.

Entities were annotated according to the Unified Medical Language System (UMLS)
semantic groups: anatomy (ANAT), pharmacological and chemical substances (CHEM),
pathologies (DISO), and lab tests, diagnostic or therapeutic procedures (PROC).
"""

from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['Spanish']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{CampillosLlanos2021,
  author    = {Leonardo Campillos-Llanos and
               Ana Valverde-Mateos and
               Adri{\'{a}}n Capllonch-Carri{\'{o}}n and
               Antonio Moreno-Sandoval},
  title     = {A clinical trials corpus annotated with {UMLS}
               entities to enhance the access to evidence-based medicine},
  journal   = {{BMC} Medical Informatics and Decision Making},
  volume    = {21},
  year      = {2021},
  url       = {https://doi.org/10.1186/s12911-021-01395-z},
  doi       = {10.1186/s12911-021-01395-z},
  biburl    = {},
  bibsource = {}
}
"""

_DATASETNAME = "ctebmsp"
_DISPLAYNAME = "CT-EBM-SP"

_ABSTRACTS_DESCRIPTION = """\
The "abstracts" subset of the Clinical Trials for Evidence-Based Medicine in Spanish
(CT-EBM-SP) corpus contains 500 abstracts of clinical trial studies in Spanish,
published in journals with a Creative Commons license. Most were downloaded from
the SciELO repository and free abstracts in PubMed.

Abstracts were retrieved with the query:
Clinical Trial[ptyp] AND “loattrfree full text”[sb] AND “spanish”[la].

(Information collected from 10.1186/s12911-021-01395-z)
"""

_EUDRACT_DESCRIPTION = """\
The "abstracts" subset of the Clinical Trials for Evidence-Based Medicine in Spanish
(CT-EBM-SP) corpus contains 500 abstracts of clinical trial studies in Spanish,
published in journals with a Creative Commons license. Most were downloaded from
the SciELO repository and free abstracts in PubMed.

Abstracts were retrieved with the query:
Clinical Trial[ptyp] AND “loattrfree full text”[sb] AND “spanish”[la].

(Information collected from 10.1186/s12911-021-01395-z)
"""

_DESCRIPTION = {
    "ctebmsp_abstracts": _ABSTRACTS_DESCRIPTION,
    "ctebmsp_eudract": _EUDRACT_DESCRIPTION,
}

_HOMEPAGE = "http://www.lllf.uam.es/ESP/nlpmedterm_en.html"

_LICENSE = 'Creative Commons Attribution Non Commercial 4.0 International'

_URLS = {
    _DATASETNAME: "http://www.lllf.uam.es/ESP/nlpdata/wp2/CT-EBM-SP.zip",
}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]

_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


class CTEBMSpDataset(datasets.GeneratorBasedBuilder):
    """A Spanish clinical trials corpus annotated with UMLS entities"""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = []

    for study in ["abstracts", "eudract"]:
        BUILDER_CONFIGS.append(
            BigBioConfig(
                name=f"ctebmsp_{study}_source",
                version=SOURCE_VERSION,
                description=f"CT-EBM-SP {study.capitalize()} source schema",
                schema="source",
                subset_id=f"ctebmsp_{study}",
            )
        )

        BUILDER_CONFIGS.append(
            BigBioConfig(
                name=f"ctebmsp_{study}_bigbio_kb",
                version=BIGBIO_VERSION,
                description=f"CT-EBM-SP {study.capitalize()} BigBio schema",
                schema="bigbio_kb",
                subset_id=f"ctebmsp_{study}",
            ),
        )

    DEFAULT_CONFIG_NAME = "ctebmsp_abstracts_source"

    # Entities from the Unified Medical Language System (UMLS) semantic groups

    def _info(self) -> datasets.DatasetInfo:
        """
        Provide information about CT-EBM-SP
        """

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "document_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "text_bound_annotations": [  # T line in brat, e.g. type or event trigger
                        {
                            "offsets": datasets.Sequence([datasets.Value("int32")]),
                            "text": datasets.Sequence(datasets.Value("string")),
                            "type": datasets.Value("string"),
                            "id": datasets.Value("string"),
                        }
                    ],
                    "events": [  # E line in brat
                        {
                            "trigger": datasets.Value(
                                "string"
                            ),  # refers to the text_bound_annotation of the trigger,
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "arguments": datasets.Sequence(
                                {
                                    "role": datasets.Value("string"),
                                    "ref_id": datasets.Value("string"),
                                }
                            ),
                        }
                    ],
                    "relations": [  # R line in brat
                        {
                            "id": datasets.Value("string"),
                            "head": {
                                "ref_id": datasets.Value("string"),
                                "role": datasets.Value("string"),
                            },
                            "tail": {
                                "ref_id": datasets.Value("string"),
                                "role": datasets.Value("string"),
                            },
                            "type": datasets.Value("string"),
                        }
                    ],
                    "equivalences": [  # Equiv line in brat
                        {
                            "id": datasets.Value("string"),
                            "ref_ids": datasets.Sequence(datasets.Value("string")),
                        }
                    ],
                    "attributes": [  # M or A lines in brat
                        {
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "ref_id": datasets.Value("string"),
                            "value": datasets.Value("string"),
                        }
                    ],
                    "normalizations": [  # N lines in brat
                        {
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "ref_id": datasets.Value("string"),
                            "resource_name": datasets.Value(
                                "string"
                            ),  # Name of the resource, e.g. "Wikipedia"
                            "cuid": datasets.Value(
                                "string"
                            ),  # ID in the resource, e.g. 534366
                            "text": datasets.Value(
                                "string"
                            ),  # Human readable description/name of the entity, e.g. "Barack Obama"
                        }
                    ],
                },
            )

        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION[self.config.subset_id],
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        urls = _URLS[_DATASETNAME]
        data_dir = Path(dl_manager.download_and_extract(urls))
        studies_path = {
            "ctebmsp_abstracts": "abstracts",
            "ctebmsp_eudract": "eudract",
        }

        study_path = studies_path[self.config.subset_id]

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"dir_files": data_dir / "train" / study_path},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"dir_files": data_dir / "test" / study_path},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"dir_files": data_dir / "dev" / study_path},
            ),
        ]

    def _generate_examples(self, dir_files) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        txt_files = list(dir_files.glob("*txt"))

        if self.config.schema == "source":
            for guid, txt_file in enumerate(txt_files):
                example = parsing.parse_brat_file(txt_file)
                example["id"] = str(guid)
                yield guid, example

        elif self.config.schema == "bigbio_kb":
            for guid, txt_file in enumerate(txt_files):
                example = parsing.brat_parse_to_bigbio_kb(
                    parsing.parse_brat_file(txt_file)
                )
                example["id"] = str(guid)
                yield guid, example
        else:
            raise ValueError(f"Invalid config: {self.config.name}")