File size: 10,521 Bytes
1071014 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Clinical Trials for Evidence-Based Medicine in Spanish (CT-EBM-SP) Corpus
gathers 1200 texts about clinical trial studies for NER; this resource contains
500 abstracts of journal articles about clinical trials and 700 announcements
of trial protocols (292 173 tokens), with 46 699 annotated entities.
Entities were annotated according to the Unified Medical Language System (UMLS)
semantic groups: anatomy (ANAT), pharmacological and chemical substances (CHEM),
pathologies (DISO), and lab tests, diagnostic or therapeutic procedures (PROC).
"""
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['Spanish']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{CampillosLlanos2021,
author = {Leonardo Campillos-Llanos and
Ana Valverde-Mateos and
Adri{\'{a}}n Capllonch-Carri{\'{o}}n and
Antonio Moreno-Sandoval},
title = {A clinical trials corpus annotated with {UMLS}
entities to enhance the access to evidence-based medicine},
journal = {{BMC} Medical Informatics and Decision Making},
volume = {21},
year = {2021},
url = {https://doi.org/10.1186/s12911-021-01395-z},
doi = {10.1186/s12911-021-01395-z},
biburl = {},
bibsource = {}
}
"""
_DATASETNAME = "ctebmsp"
_DISPLAYNAME = "CT-EBM-SP"
_ABSTRACTS_DESCRIPTION = """\
The "abstracts" subset of the Clinical Trials for Evidence-Based Medicine in Spanish
(CT-EBM-SP) corpus contains 500 abstracts of clinical trial studies in Spanish,
published in journals with a Creative Commons license. Most were downloaded from
the SciELO repository and free abstracts in PubMed.
Abstracts were retrieved with the query:
Clinical Trial[ptyp] AND “loattrfree full text”[sb] AND “spanish”[la].
(Information collected from 10.1186/s12911-021-01395-z)
"""
_EUDRACT_DESCRIPTION = """\
The "abstracts" subset of the Clinical Trials for Evidence-Based Medicine in Spanish
(CT-EBM-SP) corpus contains 500 abstracts of clinical trial studies in Spanish,
published in journals with a Creative Commons license. Most were downloaded from
the SciELO repository and free abstracts in PubMed.
Abstracts were retrieved with the query:
Clinical Trial[ptyp] AND “loattrfree full text”[sb] AND “spanish”[la].
(Information collected from 10.1186/s12911-021-01395-z)
"""
_DESCRIPTION = {
"ctebmsp_abstracts": _ABSTRACTS_DESCRIPTION,
"ctebmsp_eudract": _EUDRACT_DESCRIPTION,
}
_HOMEPAGE = "http://www.lllf.uam.es/ESP/nlpmedterm_en.html"
_LICENSE = 'Creative Commons Attribution Non Commercial 4.0 International'
_URLS = {
_DATASETNAME: "http://www.lllf.uam.es/ESP/nlpdata/wp2/CT-EBM-SP.zip",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class CTEBMSpDataset(datasets.GeneratorBasedBuilder):
"""A Spanish clinical trials corpus annotated with UMLS entities"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = []
for study in ["abstracts", "eudract"]:
BUILDER_CONFIGS.append(
BigBioConfig(
name=f"ctebmsp_{study}_source",
version=SOURCE_VERSION,
description=f"CT-EBM-SP {study.capitalize()} source schema",
schema="source",
subset_id=f"ctebmsp_{study}",
)
)
BUILDER_CONFIGS.append(
BigBioConfig(
name=f"ctebmsp_{study}_bigbio_kb",
version=BIGBIO_VERSION,
description=f"CT-EBM-SP {study.capitalize()} BigBio schema",
schema="bigbio_kb",
subset_id=f"ctebmsp_{study}",
),
)
DEFAULT_CONFIG_NAME = "ctebmsp_abstracts_source"
# Entities from the Unified Medical Language System (UMLS) semantic groups
def _info(self) -> datasets.DatasetInfo:
"""
Provide information about CT-EBM-SP
"""
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger
{
"offsets": datasets.Sequence([datasets.Value("int32")]),
"text": datasets.Sequence(datasets.Value("string")),
"type": datasets.Value("string"),
"id": datasets.Value("string"),
}
],
"events": [ # E line in brat
{
"trigger": datasets.Value(
"string"
), # refers to the text_bound_annotation of the trigger,
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"arguments": datasets.Sequence(
{
"role": datasets.Value("string"),
"ref_id": datasets.Value("string"),
}
),
}
],
"relations": [ # R line in brat
{
"id": datasets.Value("string"),
"head": {
"ref_id": datasets.Value("string"),
"role": datasets.Value("string"),
},
"tail": {
"ref_id": datasets.Value("string"),
"role": datasets.Value("string"),
},
"type": datasets.Value("string"),
}
],
"equivalences": [ # Equiv line in brat
{
"id": datasets.Value("string"),
"ref_ids": datasets.Sequence(datasets.Value("string")),
}
],
"attributes": [ # M or A lines in brat
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"ref_id": datasets.Value("string"),
"value": datasets.Value("string"),
}
],
"normalizations": [ # N lines in brat
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"ref_id": datasets.Value("string"),
"resource_name": datasets.Value(
"string"
), # Name of the resource, e.g. "Wikipedia"
"cuid": datasets.Value(
"string"
), # ID in the resource, e.g. 534366
"text": datasets.Value(
"string"
), # Human readable description/name of the entity, e.g. "Barack Obama"
}
],
},
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION[self.config.subset_id],
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = Path(dl_manager.download_and_extract(urls))
studies_path = {
"ctebmsp_abstracts": "abstracts",
"ctebmsp_eudract": "eudract",
}
study_path = studies_path[self.config.subset_id]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"dir_files": data_dir / "train" / study_path},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"dir_files": data_dir / "test" / study_path},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"dir_files": data_dir / "dev" / study_path},
),
]
def _generate_examples(self, dir_files) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
txt_files = list(dir_files.glob("*txt"))
if self.config.schema == "source":
for guid, txt_file in enumerate(txt_files):
example = parsing.parse_brat_file(txt_file)
example["id"] = str(guid)
yield guid, example
elif self.config.schema == "bigbio_kb":
for guid, txt_file in enumerate(txt_files):
example = parsing.brat_parse_to_bigbio_kb(
parsing.parse_brat_file(txt_file)
)
example["id"] = str(guid)
yield guid, example
else:
raise ValueError(f"Invalid config: {self.config.name}")
|