Commit
·
6c68295
1
Parent(s):
c4dfa83
upload hubscripts/ebm_pico_hub.py to hub from bigbio repo
Browse files- ebm_pico.py +338 -0
ebm_pico.py
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
This corpus release contains 4,993 abstracts annotated with (P)articipants,
|
18 |
+
(I)nterventions, and (O)utcomes. Training labels are sourced from AMT workers and
|
19 |
+
aggregated to reduce noise. Test labels are collected from medical professionals.
|
20 |
+
"""
|
21 |
+
|
22 |
+
import os
|
23 |
+
from pathlib import Path
|
24 |
+
from typing import Dict, List, Tuple, Union
|
25 |
+
|
26 |
+
import datasets
|
27 |
+
from .bigbiohub import kb_features
|
28 |
+
from .bigbiohub import BigBioConfig
|
29 |
+
from .bigbiohub import Tasks
|
30 |
+
|
31 |
+
_LANGUAGES = ['English']
|
32 |
+
_PUBMED = True
|
33 |
+
_LOCAL = False
|
34 |
+
_CITATION = """\
|
35 |
+
@inproceedings{nye-etal-2018-corpus,
|
36 |
+
title = "A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature",
|
37 |
+
author = "Nye, Benjamin and
|
38 |
+
Li, Junyi Jessy and
|
39 |
+
Patel, Roma and
|
40 |
+
Yang, Yinfei and
|
41 |
+
Marshall, Iain and
|
42 |
+
Nenkova, Ani and
|
43 |
+
Wallace, Byron",
|
44 |
+
booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
|
45 |
+
month = jul,
|
46 |
+
year = "2018",
|
47 |
+
address = "Melbourne, Australia",
|
48 |
+
publisher = "Association for Computational Linguistics",
|
49 |
+
url = "https://aclanthology.org/P18-1019",
|
50 |
+
doi = "10.18653/v1/P18-1019",
|
51 |
+
pages = "197--207",
|
52 |
+
}
|
53 |
+
"""
|
54 |
+
|
55 |
+
_DATASETNAME = "ebm_pico"
|
56 |
+
_DISPLAYNAME = "EBM NLP"
|
57 |
+
|
58 |
+
_DESCRIPTION = """\
|
59 |
+
This corpus release contains 4,993 abstracts annotated with (P)articipants,
|
60 |
+
(I)nterventions, and (O)utcomes. Training labels are sourced from AMT workers and
|
61 |
+
aggregated to reduce noise. Test labels are collected from medical professionals.
|
62 |
+
"""
|
63 |
+
|
64 |
+
_HOMEPAGE = "https://github.com/bepnye/EBM-NLP"
|
65 |
+
|
66 |
+
_LICENSE = 'License information unavailable'
|
67 |
+
|
68 |
+
_URLS = {
|
69 |
+
_DATASETNAME: "https://github.com/bepnye/EBM-NLP/raw/master/ebm_nlp_2_00.tar.gz"
|
70 |
+
}
|
71 |
+
|
72 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
|
73 |
+
|
74 |
+
_SOURCE_VERSION = "2.0.0"
|
75 |
+
_BIGBIO_VERSION = "1.0.0"
|
76 |
+
|
77 |
+
PHASES = ("starting_spans", "hierarchical_labels")
|
78 |
+
LABEL_DECODERS = {
|
79 |
+
PHASES[0]: {
|
80 |
+
"participants": {0: "No Label", 1: "Participant"},
|
81 |
+
"interventions": {0: "No Label", 1: "Intervention"},
|
82 |
+
"outcomes": {0: "No Label", 1: "Outcome"},
|
83 |
+
},
|
84 |
+
PHASES[1]: {
|
85 |
+
"participants": {
|
86 |
+
0: "No label",
|
87 |
+
1: "Age",
|
88 |
+
2: "Sex",
|
89 |
+
3: "Sample-size",
|
90 |
+
4: "Condition",
|
91 |
+
},
|
92 |
+
"interventions": {
|
93 |
+
0: "No label",
|
94 |
+
1: "Surgical",
|
95 |
+
2: "Physical",
|
96 |
+
3: "Pharmacological",
|
97 |
+
4: "Educational",
|
98 |
+
5: "Psychological",
|
99 |
+
6: "Other",
|
100 |
+
7: "Control",
|
101 |
+
},
|
102 |
+
"outcomes": {
|
103 |
+
0: "No label",
|
104 |
+
1: "Physical",
|
105 |
+
2: "Pain",
|
106 |
+
3: "Mortality",
|
107 |
+
4: "Adverse-effects",
|
108 |
+
5: "Mental",
|
109 |
+
6: "Other",
|
110 |
+
},
|
111 |
+
},
|
112 |
+
}
|
113 |
+
|
114 |
+
|
115 |
+
def _get_entities_pico(
|
116 |
+
annotation_dict: Dict[str, List[int]],
|
117 |
+
tokenized: List[str],
|
118 |
+
document_content: str,
|
119 |
+
) -> List[Dict[str, Union[int, str]]]:
|
120 |
+
"""extract PIO entities from documents using annotation_dict"""
|
121 |
+
|
122 |
+
def _partition(alist, indices):
|
123 |
+
return [alist[i:j] for i, j in zip([0] + indices, indices + [None])]
|
124 |
+
|
125 |
+
ents = []
|
126 |
+
for annotation_type, annotations in annotation_dict.items():
|
127 |
+
indices = [idx for idx, val in enumerate(annotations) if val != 0]
|
128 |
+
|
129 |
+
if len(indices) > 0: # if annotations exist for this sentence
|
130 |
+
split_indices = []
|
131 |
+
# if there are two annotations of one type in one sentence
|
132 |
+
for item_index, item in enumerate(indices):
|
133 |
+
if item_index + 1 == len(indices):
|
134 |
+
break
|
135 |
+
if indices[item_index] + 1 != indices[item_index + 1]:
|
136 |
+
split_indices.append(item_index + 1)
|
137 |
+
elif annotations[item] != annotations[item + 1]:
|
138 |
+
split_indices.append(item_index + 1)
|
139 |
+
multiple_indices = _partition(indices, split_indices)
|
140 |
+
|
141 |
+
for _indices in multiple_indices:
|
142 |
+
high_level_type = LABEL_DECODERS["starting_spans"][annotation_type][1]
|
143 |
+
fine_grained_type = LABEL_DECODERS["hierarchical_labels"][
|
144 |
+
annotation_type
|
145 |
+
][annotations[_indices[0]]]
|
146 |
+
annotation_text = " ".join([tokenized[ind] for ind in _indices])
|
147 |
+
|
148 |
+
char_start = document_content.find(annotation_text)
|
149 |
+
char_end = char_start + len(annotation_text)
|
150 |
+
|
151 |
+
ent = {
|
152 |
+
"annotation_text": annotation_text,
|
153 |
+
"high_level_annotation_type": high_level_type,
|
154 |
+
"fine_grained_annotation_type": fine_grained_type,
|
155 |
+
"char_start": char_start,
|
156 |
+
"char_end": char_end,
|
157 |
+
}
|
158 |
+
|
159 |
+
ents.append(ent)
|
160 |
+
return ents
|
161 |
+
|
162 |
+
|
163 |
+
class EbmPico(datasets.GeneratorBasedBuilder):
|
164 |
+
"""A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to
|
165 |
+
Support Language Processing for Medical Literature."""
|
166 |
+
|
167 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
168 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
169 |
+
|
170 |
+
BUILDER_CONFIGS = [
|
171 |
+
BigBioConfig(
|
172 |
+
name="ebm_pico_source",
|
173 |
+
version=SOURCE_VERSION,
|
174 |
+
description="ebm_pico source schema",
|
175 |
+
schema="source",
|
176 |
+
subset_id="ebm_pico",
|
177 |
+
),
|
178 |
+
BigBioConfig(
|
179 |
+
name="ebm_pico_bigbio_kb",
|
180 |
+
version=BIGBIO_VERSION,
|
181 |
+
description="ebm_pico BigBio schema",
|
182 |
+
schema="bigbio_kb",
|
183 |
+
subset_id="ebm_pico",
|
184 |
+
),
|
185 |
+
]
|
186 |
+
|
187 |
+
DEFAULT_CONFIG_NAME = "ebm_pico_source"
|
188 |
+
|
189 |
+
def _info(self) -> datasets.DatasetInfo:
|
190 |
+
|
191 |
+
if self.config.schema == "source":
|
192 |
+
features = datasets.Features(
|
193 |
+
{
|
194 |
+
"doc_id": datasets.Value("string"),
|
195 |
+
"text": datasets.Value("string"),
|
196 |
+
"entities": [
|
197 |
+
{
|
198 |
+
"text": datasets.Value("string"),
|
199 |
+
"annotation_type": datasets.Value("string"),
|
200 |
+
"fine_grained_annotation_type": datasets.Value("string"),
|
201 |
+
"start": datasets.Value("int64"),
|
202 |
+
"end": datasets.Value("int64"),
|
203 |
+
}
|
204 |
+
],
|
205 |
+
}
|
206 |
+
)
|
207 |
+
|
208 |
+
elif self.config.schema == "bigbio_kb":
|
209 |
+
features = kb_features
|
210 |
+
else:
|
211 |
+
raise ValueError("config.schema must be either source or bigbio_kb")
|
212 |
+
|
213 |
+
return datasets.DatasetInfo(
|
214 |
+
description=_DESCRIPTION,
|
215 |
+
features=features,
|
216 |
+
homepage=_HOMEPAGE,
|
217 |
+
license=str(_LICENSE),
|
218 |
+
citation=_CITATION,
|
219 |
+
)
|
220 |
+
|
221 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
222 |
+
"""Returns SplitGenerators."""
|
223 |
+
|
224 |
+
urls = _URLS[_DATASETNAME]
|
225 |
+
data_dir = dl_manager.download_and_extract(urls)
|
226 |
+
|
227 |
+
documents_folder = Path(data_dir) / "ebm_nlp_2_00" / "documents"
|
228 |
+
annotations_folder = (
|
229 |
+
Path(data_dir) / "ebm_nlp_2_00" / "annotations" / "aggregated"
|
230 |
+
)
|
231 |
+
return [
|
232 |
+
datasets.SplitGenerator(
|
233 |
+
name=datasets.Split.TRAIN,
|
234 |
+
gen_kwargs={
|
235 |
+
"documents_folder": documents_folder,
|
236 |
+
"annotations_folder": annotations_folder,
|
237 |
+
"split_folder": "train",
|
238 |
+
},
|
239 |
+
),
|
240 |
+
datasets.SplitGenerator(
|
241 |
+
name=datasets.Split.TEST,
|
242 |
+
gen_kwargs={
|
243 |
+
"documents_folder": documents_folder,
|
244 |
+
"annotations_folder": annotations_folder,
|
245 |
+
"split_folder": "test/gold",
|
246 |
+
},
|
247 |
+
),
|
248 |
+
]
|
249 |
+
|
250 |
+
def _generate_examples(
|
251 |
+
self, documents_folder, annotations_folder, split_folder: str
|
252 |
+
) -> Tuple[int, Dict]:
|
253 |
+
"""Yields examples as (key, example) tuples."""
|
254 |
+
annotation_types = ["interventions", "outcomes", "participants"]
|
255 |
+
|
256 |
+
docs_path = os.path.join(
|
257 |
+
annotations_folder,
|
258 |
+
f"hierarchical_labels/{annotation_types[0]}/{split_folder}/",
|
259 |
+
)
|
260 |
+
documents_in_split = os.listdir(docs_path)
|
261 |
+
|
262 |
+
uid = 0
|
263 |
+
for id_, document in enumerate(documents_in_split):
|
264 |
+
document_id = document.split(".")[0]
|
265 |
+
with open(f"{documents_folder}/{document_id}.tokens") as fp:
|
266 |
+
tokenized = fp.read().splitlines()
|
267 |
+
document_content = " ".join(tokenized)
|
268 |
+
|
269 |
+
annotation_dict = {}
|
270 |
+
for annotation_type in annotation_types:
|
271 |
+
try:
|
272 |
+
with open(
|
273 |
+
f"{annotations_folder}/hierarchical_labels/{annotation_type}/{split_folder}/{document}"
|
274 |
+
) as fp:
|
275 |
+
annotation_dict[annotation_type] = [
|
276 |
+
int(x) for x in fp.read().splitlines()
|
277 |
+
]
|
278 |
+
except OSError:
|
279 |
+
annotation_dict[annotation_type] = []
|
280 |
+
|
281 |
+
ents = _get_entities_pico(
|
282 |
+
annotation_dict, tokenized=tokenized, document_content=document_content
|
283 |
+
)
|
284 |
+
|
285 |
+
if self.config.schema == "source":
|
286 |
+
|
287 |
+
data = {
|
288 |
+
"doc_id": document_id,
|
289 |
+
"text": document_content,
|
290 |
+
"entities": [
|
291 |
+
{
|
292 |
+
"text": ent["annotation_text"],
|
293 |
+
"annotation_type": ent["high_level_annotation_type"],
|
294 |
+
"fine_grained_annotation_type": ent[
|
295 |
+
"fine_grained_annotation_type"
|
296 |
+
],
|
297 |
+
"start": ent["char_start"],
|
298 |
+
"end": ent["char_end"],
|
299 |
+
}
|
300 |
+
for ent in ents
|
301 |
+
],
|
302 |
+
}
|
303 |
+
yield id_, data
|
304 |
+
|
305 |
+
elif self.config.schema == "bigbio_kb":
|
306 |
+
data = {
|
307 |
+
"id": str(uid),
|
308 |
+
"document_id": document_id,
|
309 |
+
"passages": [],
|
310 |
+
"entities": [],
|
311 |
+
"relations": [],
|
312 |
+
"events": [],
|
313 |
+
"coreferences": [],
|
314 |
+
}
|
315 |
+
uid += 1
|
316 |
+
|
317 |
+
data["passages"] = [
|
318 |
+
{
|
319 |
+
"id": str(uid),
|
320 |
+
"type": "document",
|
321 |
+
"text": [document_content],
|
322 |
+
"offsets": [[0, len(document_content)]],
|
323 |
+
}
|
324 |
+
]
|
325 |
+
uid += 1
|
326 |
+
|
327 |
+
for ent in ents:
|
328 |
+
entity = {
|
329 |
+
"id": uid,
|
330 |
+
"type": f'{ent["high_level_annotation_type"]}_{ent["fine_grained_annotation_type"]}',
|
331 |
+
"text": [ent["annotation_text"]],
|
332 |
+
"offsets": [[ent["char_start"], ent["char_end"]]],
|
333 |
+
"normalized": [],
|
334 |
+
}
|
335 |
+
data["entities"].append(entity)
|
336 |
+
uid += 1
|
337 |
+
|
338 |
+
yield uid, data
|