# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This corpus release contains 4,993 abstracts annotated with (P)articipants, (I)nterventions, and (O)utcomes. Training labels are sourced from AMT workers and aggregated to reduce noise. Test labels are collected from medical professionals. """ import os from pathlib import Path from typing import Dict, List, Tuple, Union import datasets from .bigbiohub import kb_features from .bigbiohub import BigBioConfig from .bigbiohub import Tasks _LANGUAGES = ['English'] _PUBMED = True _LOCAL = False _CITATION = """\ @inproceedings{nye-etal-2018-corpus, title = "A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature", author = "Nye, Benjamin and Li, Junyi Jessy and Patel, Roma and Yang, Yinfei and Marshall, Iain and Nenkova, Ani and Wallace, Byron", booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = jul, year = "2018", address = "Melbourne, Australia", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/P18-1019", doi = "10.18653/v1/P18-1019", pages = "197--207", } """ _DATASETNAME = "ebm_pico" _DISPLAYNAME = "EBM NLP" _DESCRIPTION = """\ This corpus release contains 4,993 abstracts annotated with (P)articipants, (I)nterventions, and (O)utcomes. Training labels are sourced from AMT workers and aggregated to reduce noise. Test labels are collected from medical professionals. """ _HOMEPAGE = "https://github.com/bepnye/EBM-NLP" _LICENSE = 'License information unavailable' _URLS = { _DATASETNAME: "https://github.com/bepnye/EBM-NLP/raw/master/ebm_nlp_2_00.tar.gz" } _SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] _SOURCE_VERSION = "2.0.0" _BIGBIO_VERSION = "1.0.0" PHASES = ("starting_spans", "hierarchical_labels") LABEL_DECODERS = { PHASES[0]: { "participants": {0: "No Label", 1: "Participant"}, "interventions": {0: "No Label", 1: "Intervention"}, "outcomes": {0: "No Label", 1: "Outcome"}, }, PHASES[1]: { "participants": { 0: "No label", 1: "Age", 2: "Sex", 3: "Sample-size", 4: "Condition", }, "interventions": { 0: "No label", 1: "Surgical", 2: "Physical", 3: "Pharmacological", 4: "Educational", 5: "Psychological", 6: "Other", 7: "Control", }, "outcomes": { 0: "No label", 1: "Physical", 2: "Pain", 3: "Mortality", 4: "Adverse-effects", 5: "Mental", 6: "Other", }, }, } def _get_entities_pico( annotation_dict: Dict[str, List[int]], tokenized: List[str], document_content: str, ) -> List[Dict[str, Union[int, str]]]: """extract PIO entities from documents using annotation_dict""" def _partition(alist, indices): return [alist[i:j] for i, j in zip([0] + indices, indices + [None])] ents = [] for annotation_type, annotations in annotation_dict.items(): indices = [idx for idx, val in enumerate(annotations) if val != 0] if len(indices) > 0: # if annotations exist for this sentence split_indices = [] # if there are two annotations of one type in one sentence for item_index, item in enumerate(indices): if item_index + 1 == len(indices): break if indices[item_index] + 1 != indices[item_index + 1]: split_indices.append(item_index + 1) elif annotations[item] != annotations[item + 1]: split_indices.append(item_index + 1) multiple_indices = _partition(indices, split_indices) for _indices in multiple_indices: high_level_type = LABEL_DECODERS["starting_spans"][annotation_type][1] fine_grained_type = LABEL_DECODERS["hierarchical_labels"][ annotation_type ][annotations[_indices[0]]] annotation_text = " ".join([tokenized[ind] for ind in _indices]) char_start = document_content.find(annotation_text) char_end = char_start + len(annotation_text) ent = { "annotation_text": annotation_text, "high_level_annotation_type": high_level_type, "fine_grained_annotation_type": fine_grained_type, "char_start": char_start, "char_end": char_end, } ents.append(ent) return ents class EbmPico(datasets.GeneratorBasedBuilder): """A Corpus with Multi-Level Annotations of Patients, Interventions and Outcomes to Support Language Processing for Medical Literature.""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) BUILDER_CONFIGS = [ BigBioConfig( name="ebm_pico_source", version=SOURCE_VERSION, description="ebm_pico source schema", schema="source", subset_id="ebm_pico", ), BigBioConfig( name="ebm_pico_bigbio_kb", version=BIGBIO_VERSION, description="ebm_pico BigBio schema", schema="bigbio_kb", subset_id="ebm_pico", ), ] DEFAULT_CONFIG_NAME = "ebm_pico_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "doc_id": datasets.Value("string"), "text": datasets.Value("string"), "entities": [ { "text": datasets.Value("string"), "annotation_type": datasets.Value("string"), "fine_grained_annotation_type": datasets.Value("string"), "start": datasets.Value("int64"), "end": datasets.Value("int64"), } ], } ) elif self.config.schema == "bigbio_kb": features = kb_features else: raise ValueError("config.schema must be either source or bigbio_kb") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=str(_LICENSE), citation=_CITATION, ) def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" urls = _URLS[_DATASETNAME] data_dir = dl_manager.download_and_extract(urls) documents_folder = Path(data_dir) / "ebm_nlp_2_00" / "documents" annotations_folder = ( Path(data_dir) / "ebm_nlp_2_00" / "annotations" / "aggregated" ) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "documents_folder": documents_folder, "annotations_folder": annotations_folder, "split_folder": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "documents_folder": documents_folder, "annotations_folder": annotations_folder, "split_folder": "test/gold", }, ), ] def _generate_examples( self, documents_folder, annotations_folder, split_folder: str ) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" annotation_types = ["interventions", "outcomes", "participants"] docs_path = os.path.join( annotations_folder, f"hierarchical_labels/{annotation_types[0]}/{split_folder}/", ) documents_in_split = sorted(os.listdir(docs_path)) uid = 0 for id_, document in enumerate(documents_in_split): document_id = document.split(".")[0] with open(f"{documents_folder}/{document_id}.tokens") as fp: tokenized = fp.read().splitlines() document_content = " ".join(tokenized) annotation_dict = {} for annotation_type in annotation_types: try: with open( f"{annotations_folder}/hierarchical_labels/{annotation_type}/{split_folder}/{document}" ) as fp: annotation_dict[annotation_type] = [ int(x) for x in fp.read().splitlines() ] except OSError: annotation_dict[annotation_type] = [] ents = _get_entities_pico( annotation_dict, tokenized=tokenized, document_content=document_content ) if self.config.schema == "source": data = { "doc_id": document_id, "text": document_content, "entities": [ { "text": ent["annotation_text"], "annotation_type": ent["high_level_annotation_type"], "fine_grained_annotation_type": ent[ "fine_grained_annotation_type" ], "start": ent["char_start"], "end": ent["char_end"], } for ent in ents ], } yield id_, data elif self.config.schema == "bigbio_kb": data = { "id": str(uid), "document_id": document_id, "passages": [], "entities": [], "relations": [], "events": [], "coreferences": [], } uid += 1 data["passages"] = [ { "id": str(uid), "type": "document", "text": [document_content], "offsets": [[0, len(document_content)]], } ] uid += 1 for ent in ents: entity = { "id": uid, "type": f'{ent["high_level_annotation_type"]}_{ent["fine_grained_annotation_type"]}', "text": [ent["annotation_text"]], "offsets": [[ent["char_start"], ent["char_end"]]], "normalized": [], } data["entities"].append(entity) uid += 1 yield uid, data