|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
from .bigbiohub import text_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{DBLP:journals/bioinformatics/BakerSGAHSK16, |
|
author = {Simon Baker and |
|
Ilona Silins and |
|
Yufan Guo and |
|
Imran Ali and |
|
Johan H{\"{o}}gberg and |
|
Ulla Stenius and |
|
Anna Korhonen}, |
|
title = {Automatic semantic classification of scientific literature |
|
according to the hallmarks of cancer}, |
|
journal = {Bioinform.}, |
|
volume = {32}, |
|
number = {3}, |
|
pages = {432--440}, |
|
year = {2016}, |
|
url = {https://doi.org/10.1093/bioinformatics/btv585}, |
|
doi = {10.1093/bioinformatics/btv585}, |
|
timestamp = {Thu, 14 Oct 2021 08:57:44 +0200}, |
|
biburl = {https://dblp.org/rec/journals/bioinformatics/BakerSGAHSK16.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "hallmarks_of_cancer" |
|
_DISPLAYNAME = "Hallmarks of Cancer" |
|
|
|
_DESCRIPTION = """\ |
|
The Hallmarks of Cancer (HOC) Corpus consists of 1852 PubMed publication |
|
abstracts manually annotated by experts according to a taxonomy. The taxonomy |
|
consists of 37 classes in a hierarchy. Zero or more class labels are assigned |
|
to each sentence in the corpus. The labels are found under the "labels" |
|
directory, while the tokenized text can be found under "text" directory. |
|
The filenames are the corresponding PubMed IDs (PMID). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/sb895/Hallmarks-of-Cancer" |
|
|
|
_LICENSE = 'GNU General Public License v3.0 only' |
|
|
|
_URLs = { |
|
"corpus": "https://github.com/sb895/Hallmarks-of-Cancer/archive/refs/heads/master.zip", |
|
"split_indices": "https://microsoft.github.io/BLURB/sample_code/data_generation.tar.gz", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
_CLASS_NAMES = [ |
|
"evading growth suppressors", |
|
"tumor promoting inflammation", |
|
"enabling replicative immortality", |
|
"cellular energetics", |
|
"resisting cell death", |
|
"activating invasion and metastasis", |
|
"genomic instability and mutation", |
|
"none", |
|
"inducing angiogenesis", |
|
"sustaining proliferative signaling", |
|
"avoiding immune destruction", |
|
] |
|
|
|
|
|
class HallmarksOfCancerDataset(datasets.GeneratorBasedBuilder): |
|
"""Hallmarks Of Cancer Dataset""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="hallmarks_of_cancer_source", |
|
version=SOURCE_VERSION, |
|
description="Hallmarks of Cancer source schema", |
|
schema="source", |
|
subset_id="hallmarks_of_cancer", |
|
), |
|
BigBioConfig( |
|
name="hallmarks_of_cancer_bigbio_text", |
|
version=BIGBIO_VERSION, |
|
description="Hallmarks of Cancer Biomedical schema", |
|
schema="bigbio_text", |
|
subset_id="hallmarks_of_cancer", |
|
), |
|
] |
|
DEFAULT_CONFIG_NAME = "hallmarks_of_cancer_source" |
|
|
|
def _info(self): |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"label": [datasets.ClassLabel(names=_CLASS_NAMES)], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_text": |
|
features = text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"corpuspath": Path(data_dir["corpus"]), |
|
"indicespath": Path(data_dir["split_indices"]) |
|
/ "data_generation/indexing/HoC/train_pmid.tsv", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"corpuspath": Path(data_dir["corpus"]), |
|
"indicespath": Path(data_dir["split_indices"]) |
|
/ "data_generation/indexing/HoC/test_pmid.tsv", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"corpuspath": Path(data_dir["corpus"]), |
|
"indicespath": Path(data_dir["split_indices"]) |
|
/ "data_generation/indexing/HoC/dev_pmid.tsv", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, corpuspath: Path, indicespath: Path): |
|
|
|
indices = indicespath.read_text(encoding="utf8").strip("\n").split(",") |
|
dataset_dir = corpuspath / "Hallmarks-of-Cancer-master" |
|
texts_dir = dataset_dir / "text" |
|
labels_dir = dataset_dir / "labels" |
|
|
|
uid = 1 |
|
for document_index, document in enumerate(indices): |
|
text_file = texts_dir / document |
|
label_file = labels_dir / document |
|
text = text_file.read_text(encoding="utf8").strip("\n") |
|
labels = label_file.read_text(encoding="utf8").strip("\n") |
|
|
|
sentences = text.split("\n") |
|
labels = labels.split("<")[1:] |
|
|
|
for example_index, example_pair in enumerate(zip(sentences, labels)): |
|
sentence, label = example_pair |
|
|
|
label = label.strip() |
|
|
|
if label == "": |
|
label = "none" |
|
|
|
multi_labels = [m_label.strip() for m_label in label.split("AND")] |
|
unique_multi_labels = { |
|
m_label.split("--")[0].lower().lstrip() |
|
for m_label in multi_labels |
|
if m_label != "NULL" |
|
} |
|
|
|
arrow_file_unique_key = 100 * document_index + example_index |
|
if self.config.schema == "source": |
|
yield arrow_file_unique_key, { |
|
"document_id": f"{text_file.name.split('.')[0]}_{example_index}", |
|
"text": sentence, |
|
"label": list(unique_multi_labels), |
|
} |
|
elif self.config.schema == "bigbio_text": |
|
yield arrow_file_unique_key, { |
|
"id": uid, |
|
"document_id": f"{text_file.name.split('.')[0]}_{example_index}", |
|
"text": sentence, |
|
"labels": list(unique_multi_labels), |
|
} |
|
uid += 1 |
|
|