|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The Repository for Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is |
|
a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding |
|
pre-training in the medical domain. This script loads the MeDAL dataset in the bigbio KB schema and/or source schema. |
|
""" |
|
|
|
import pandas as pd |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{, |
|
title = {MeDAL\: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining}, |
|
author = {Wen, Zhi and Lu, Xing Han and Reddy, Siva}, |
|
booktitle = {Proceedings of the 3rd Clinical Natural Language Processing Workshop}, |
|
month = {Nov}, |
|
year = {2020}, |
|
address = {Online}, |
|
publisher = {Association for Computational Linguistics}, |
|
url = {https://www.aclweb.org/anthology/2020.clinicalnlp-1.15}, |
|
pages = {130--135}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "medal" |
|
_DISPLAYNAME = "MeDAL" |
|
|
|
_DESCRIPTION = """\ |
|
The Repository for Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is |
|
a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding |
|
pre-training in the medical domain. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/BruceWen120/medal" |
|
|
|
_LICENSE = 'National Library of Medicine Terms and Conditions' |
|
|
|
_URL = "https://zenodo.org/record/4482922/files/" |
|
_URLS = { |
|
"train": _URL + "train.csv", |
|
"test": _URL + "test.csv", |
|
"valid": _URL + "valid.csv", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_DISAMBIGUATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class MedalDataset(datasets.GeneratorBasedBuilder): |
|
"""The Repository for Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is |
|
a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding |
|
pre-training in the medical domain.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="medal_source", |
|
version=SOURCE_VERSION, |
|
description="MeDAL source schema", |
|
schema="source", |
|
subset_id="medal", |
|
), |
|
BigBioConfig( |
|
name="medal_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="MeDAL BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="medal", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "medal_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"abstract_id": datasets.Value("int32"), |
|
"text": datasets.Value("string"), |
|
"location": datasets.Sequence(datasets.Value("int32")), |
|
"label": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
urls_to_dl = _URLS |
|
try: |
|
dl_dir = dl_manager.download_and_extract(urls_to_dl) |
|
except Exception: |
|
logger.warning( |
|
"This dataset is downloaded through Zenodo which is flaky. If this download failed try a few times before reporting an issue" |
|
) |
|
raise |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"filepath": dl_dir["train"], "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"filepath": dl_dir["test"], "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"filepath": dl_dir["valid"], "split": "val"}, |
|
), |
|
] |
|
|
|
def _generate_offsets(self, text, location): |
|
"""Generate offsets from text and word location. |
|
|
|
Parameters |
|
---------- |
|
text : text |
|
Abstract text |
|
location : int |
|
location of abbreviation in text, indexed by number of words in abstract |
|
|
|
Returns |
|
------- |
|
dict |
|
"word": str, |
|
"offsets": tuple (int, int) |
|
""" |
|
words = text.split(" ") |
|
word = words[location] |
|
offset_start = sum(len(word) for word in words[0:location]) + location |
|
offset_end = offset_start + len(word) |
|
|
|
|
|
return {"word": word, "offsets": (offset_start, offset_end)} |
|
|
|
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(filepath, encoding="utf-8") as file: |
|
data = pd.read_csv( |
|
file, |
|
sep=",", |
|
dtype={"ABSTRACT_ID": str, "TEXT": str, "LOCATION": int, "LABEL": str}, |
|
) |
|
|
|
if self.config.schema == "source": |
|
for id_, row in enumerate(data.itertuples()): |
|
yield id_, { |
|
"abstract_id": int(row.ABSTRACT_ID), |
|
"text": row.TEXT, |
|
"location": [row.LOCATION], |
|
"label": [row.LABEL], |
|
} |
|
elif self.config.schema == "bigbio_kb": |
|
uid = 0 |
|
for id_, row in enumerate(data.itertuples()): |
|
word_offsets = self._generate_offsets(row.TEXT, row.LOCATION) |
|
example = { |
|
"id": str(uid), |
|
"document_id": row.ABSTRACT_ID, |
|
"passages": [], |
|
"entities": [], |
|
"relations": [], |
|
"events": [], |
|
"coreferences": [], |
|
} |
|
uid += 1 |
|
|
|
example["passages"].append( |
|
{ |
|
"id": str(uid), |
|
"type": "PubMed abstract", |
|
"text": [row.TEXT], |
|
"offsets": [(0, len(row.TEXT))], |
|
} |
|
) |
|
|
|
uid += 1 |
|
|
|
example["entities"].append( |
|
{ |
|
"id": str(uid), |
|
"type": "abbreviation", |
|
"text": [word_offsets["word"]], |
|
"offsets": [word_offsets["offsets"]], |
|
"normalized": [ |
|
{ |
|
"db_name": "medal", |
|
"db_id": row.LABEL, |
|
} |
|
], |
|
} |
|
) |
|
uid += 1 |
|
yield id_, example |
|
|