Datasets:

Languages:
English
License:
n2c2_2006_deid / n2c2_2006_deid.py
gabrielaltay's picture
upload hubscripts/n2c2_2006_deid_hub.py to hub from bigbio repo
fc646bf
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A dataset loader for the n2c2 2006 de-identification dataset.
https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
The dataset consists of two archive files,
* deid_surrogate_train_all_version2.zip
* deid_surrogate_test_all_groundtruth_version2.zip
The individual data files (inside the zip archives) come in just 1 type:
* xml (*.xml files): contains the id and text of the patient records,
and the corresponding tags for each one of the Patient Health information (PHI)
categories: Patients, Doctors, Hospitals, IDs, Dates, Locations, Phone Numbers, and Ages
The files comprising this dataset must be on the users local machine
in a single directory that is passed to `datasets.load_datset` via
the `data_dir` kwarg. This loader script will read the archive files
directly (i.e. the user should not uncompress, untar or unzip any of
the files). For example, if the following directory structure exists
on the users local machine,
n2c2_2006_deid
├── deid_surrogate_train_all_version2.zip
├── deid_surrogate_test_all_groundtruth_version2.zip
Data Access
from https://www.i2b2.org/NLP/DataSets/Main.php
"As always, you must register AND submit a DUA for access. If you previously
accessed the data sets here on i2b2.org, you will need to set a new password
for your account on the Data Portal, but your original DUA will be retained."
"""
import itertools as it
import os
import re
import xml.etree.ElementTree as et
import zipfile
from typing import Dict, List, Tuple
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_DATASETNAME = "n2c2_2006"
_DISPLAYNAME = "n2c2 2006 De-identification"
# https://academic.oup.com/jamia/article/14/5/550/720189
_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = True
_CITATION = """\
@article{uzuner2007evaluating,
author = {
Uzuner, Özlem and
Luo, Yuan and
Szolovits, Peter
},
title = {Evaluating the State-of-the-Art in Automatic De-identification},
journal = {Journal of the American Medical Informatics Association},
volume = {14},
number = {5},
pages = {550-563},
year = {2007},
month = {09},
url = {https://doi.org/10.1197/jamia.M2444},
doi = {10.1197/jamia.M2444},
eprint = {https://academic.oup.com/jamia/article-pdf/14/5/550/2136261/14-5-550.pdf}
}
"""
_DESCRIPTION = """\
The data for the de-identification challenge came from Partners Healthcare and
included solely medical discharge summaries. We prepared the data for the
challengeby annotating and by replacing all authentic PHI with realistic
surrogates.
Given the above definitions, we marked the authentic PHI in the records in two stages.
In the first stage, we used an automatic system.31 In the second stage, we validated
the output of the automatic system manually. Three annotators, including undergraduate
and graduate students and a professor, serially made three manual passes over each record.
They marked and discussed the PHI tags they disagreed on and finalized these tags
after discussion.
The original dataset does not have spans for each entity. The spans are
computed in this loader and the final text that correspond with the
tags is preserved in the source format
"""
_HOMEPAGE = "https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/"
_LICENSE = 'Data User Agreement'
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class N2C22006DeidDataset(datasets.GeneratorBasedBuilder):
"""n2c2 2006 smoking status identification task"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="n2c2_2006_deid_source",
version=SOURCE_VERSION,
description="n2c2_2006 deid source schema",
schema="source",
subset_id="n2c2_2006_deid",
),
BigBioConfig(
name="n2c2_2006_deid_bigbio_kb",
version=BIGBIO_VERSION,
description="n2c2_2006 Deid BigBio schema",
schema="bigbio_kb",
subset_id="n2c2_2006_deid",
),
]
DEFAULT_CONFIG_NAME = "n2c2_2006_deid_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"record_id": datasets.Value("string"),
"text": datasets.Value("string"),
"phi": datasets.Sequence(datasets.Value("string")),
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
if self.config.data_dir is None:
raise ValueError(
"This is a local dataset. Please pass the data_dir kwarg to load_dataset."
)
else:
data_dir = self.config.data_dir
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_dir": data_dir,
"corpus_fname": "deid_surrogate_train_all_version2.zip",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_dir": data_dir,
"corpus_fname": "deid_surrogate_test_all_groundtruth_version2.zip",
},
),
]
def _generate_examples(self, data_dir: str, corpus_fname: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
fpath = os.path.join(data_dir, corpus_fname)
# samples = _read_zip(path)
if self.config.schema == "source":
for document in self._generate_parsed_documents(fpath):
yield document["record_id"], document
elif self.config.schema == "bigbio_kb":
uid = it.count(0)
for document in self._generate_parsed_documents(fpath):
document["id"] = next(uid)
document["document_id"] = document.pop("record_id")
entity_list = document.pop("phi")
full_text = document.pop("text")
entities_ = []
for entity in entity_list:
entities_.append(
{
"id": next(uid),
"type": entity["type"],
"text": entity["text"],
"offsets": entity["offsets"],
"normalized": entity["normalized"],
}
)
document["entities"] = entities_
document["passages"] = [
{
"id": next(uid),
"type": "full_text",
"text": [full_text],
"offsets": [[0, len(full_text)]],
},
]
# additional fields required that can be empty
document["relations"] = []
document["events"] = []
document["coreferences"] = []
yield document["document_id"], document
def _generate_parsed_documents(self, file_path):
_, filename = os.path.split(file_path)
zipped = zipfile.ZipFile(file_path, "r")
file = zipped.read(filename.split(".")[0] + ".xml")
# There is an issue with the train file. There is a bad tag in line 25722
if filename == "deid_surrogate_train_all_version2.zip":
bad_tag = """<PHI TYPE="DATE">25th of July<PHI TYPE="DOCTOR">""".encode(
"utf-8"
)
replacement_tag = """<PHI TYPE="DATE">25th of July</PHI>""".encode("utf-8")
file = file.replace(bad_tag, replacement_tag, 1)
root = et.fromstring(file)
documents = root.findall("./RECORD")
record_regex = r"<RECORD ID=|</RECORD>"
text_regex = r"<TEXT>|</TEXT>"
file_string = str(file)
record_matches = list(re.finditer(record_regex, file_string))
n_matches = len(record_matches)
if len(documents) != n_matches / 2:
raise ValueError(
"""the records found thourgh regex are not the
same as the ones found using xmltree"""
)
# counter for the documents in xml
k = 0
for i in range(0, n_matches, 2):
# find beginning and end of a section
record_start = record_matches[i].span()[1]
record_end = record_matches[i + 1].span()[0]
record_section = file_string[record_start:record_end]
# find only the text section
text_matches = list(re.finditer(text_regex, record_section))
if len(text_matches) > 2:
raise ValueError("It should only be one match for text within a record")
text_start = text_matches[0].span()[1]
text_end = text_matches[1].span()[0]
# remove new line at the beginning and the end
full_text_with_tags = record_section[text_start:text_end].strip("\\n")
# Remove special characters
full_text_with_tags = self._remove_special_characters(full_text_with_tags)
# find all the PHI tags to process them one by one
document = documents[k]
phi_xml_tags = document.findall("./TEXT/PHI")
k += 1
entities, clean_text = self._extract_tags_text_spans(
full_text_with_tags=full_text_with_tags, phi_list=phi_xml_tags
)
document_dict = {
"record_id": document.attrib["ID"],
"text": clean_text,
"phi": entities,
}
yield document_dict
def _extract_tags_text_spans(
self, full_text_with_tags: str, phi_list: List[et.Element]
) -> List[Dict]:
"""
Method to extract all PHI tags from within the XML
Note: There are entities with the same text but different tags.
Example "Head" Type Doctor/Patient
Because of this the method needs to check first for it and then assumes the retrieval order
by the xml library and get the proper spans for each one
"""
entities = []
for phi in phi_list:
entity_text = phi.text
entity_type = phi.attrib["TYPE"]
phi_regex = re.escape(f"""<PHI TYPE="{entity_type}">{entity_text}</PHI>""")
phi_match = re.search(phi_regex, full_text_with_tags)
if phi_match is None:
print(phi_regex)
raise ValueError(f"PHI tag {phi_regex} not found")
entity_start = phi_match.span()[0]
entity_end = entity_start + len(entity_text)
# Substitute in the original text to eliminate the current tag
# only replace the first occurrence
full_text_with_tags = re.sub(
pattern=phi_regex, repl=entity_text, string=full_text_with_tags, count=1
)
# check that the text within the span is the same as the entity text
if entity_text != full_text_with_tags[entity_start:entity_end]:
raise ValueError("Entity text does not have the correct span")
# save the entities
entities.append(
{
"text": [entity_text],
"type": entity_type,
"offsets": [[entity_start, entity_end]],
"normalized": [],
}
)
# clean the last remaining tag
clean_text = re.sub(r"\\n\[ report_end \]", "", full_text_with_tags)
return entities, clean_text
def _remove_special_characters(self, text: str) -> str:
result = text.replace("&gt;", ">")
result = result.replace("&lt;", "<")
result = result.replace("&quot;", '"')
result = result.replace("&apos;", "'")
return result