# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A dataset loader for the n2c2 2006 de-identification dataset. https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/ The dataset consists of two archive files, * deid_surrogate_train_all_version2.zip * deid_surrogate_test_all_groundtruth_version2.zip The individual data files (inside the zip archives) come in just 1 type: * xml (*.xml files): contains the id and text of the patient records, and the corresponding tags for each one of the Patient Health information (PHI) categories: Patients, Doctors, Hospitals, IDs, Dates, Locations, Phone Numbers, and Ages The files comprising this dataset must be on the users local machine in a single directory that is passed to `datasets.load_datset` via the `data_dir` kwarg. This loader script will read the archive files directly (i.e. the user should not uncompress, untar or unzip any of the files). For example, if the following directory structure exists on the users local machine, n2c2_2006_deid ├── deid_surrogate_train_all_version2.zip ├── deid_surrogate_test_all_groundtruth_version2.zip Data Access from https://www.i2b2.org/NLP/DataSets/Main.php "As always, you must register AND submit a DUA for access. If you previously accessed the data sets here on i2b2.org, you will need to set a new password for your account on the Data Portal, but your original DUA will be retained." """ import itertools as it import os import re import xml.etree.ElementTree as et import zipfile from typing import Dict, List, Tuple import datasets from .bigbiohub import kb_features from .bigbiohub import BigBioConfig from .bigbiohub import Tasks _DATASETNAME = "n2c2_2006" _DISPLAYNAME = "n2c2 2006 De-identification" # https://academic.oup.com/jamia/article/14/5/550/720189 _LANGUAGES = ['English'] _PUBMED = False _LOCAL = True _CITATION = """\ @article{uzuner2007evaluating, author = { Uzuner, Özlem and Luo, Yuan and Szolovits, Peter }, title = {Evaluating the State-of-the-Art in Automatic De-identification}, journal = {Journal of the American Medical Informatics Association}, volume = {14}, number = {5}, pages = {550-563}, year = {2007}, month = {09}, url = {https://doi.org/10.1197/jamia.M2444}, doi = {10.1197/jamia.M2444}, eprint = {https://academic.oup.com/jamia/article-pdf/14/5/550/2136261/14-5-550.pdf} } """ _DESCRIPTION = """\ The data for the de-identification challenge came from Partners Healthcare and included solely medical discharge summaries. We prepared the data for the challengeby annotating and by replacing all authentic PHI with realistic surrogates. Given the above definitions, we marked the authentic PHI in the records in two stages. In the first stage, we used an automatic system.31 In the second stage, we validated the output of the automatic system manually. Three annotators, including undergraduate and graduate students and a professor, serially made three manual passes over each record. They marked and discussed the PHI tags they disagreed on and finalized these tags after discussion. The original dataset does not have spans for each entity. The spans are computed in this loader and the final text that correspond with the tags is preserved in the source format """ _HOMEPAGE = "https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/" _LICENSE = 'Data User Agreement' _SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] _SOURCE_VERSION = "1.0.0" _BIGBIO_VERSION = "1.0.0" class N2C22006DeidDataset(datasets.GeneratorBasedBuilder): """n2c2 2006 smoking status identification task""" SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) BUILDER_CONFIGS = [ BigBioConfig( name="n2c2_2006_deid_source", version=SOURCE_VERSION, description="n2c2_2006 deid source schema", schema="source", subset_id="n2c2_2006_deid", ), BigBioConfig( name="n2c2_2006_deid_bigbio_kb", version=BIGBIO_VERSION, description="n2c2_2006 Deid BigBio schema", schema="bigbio_kb", subset_id="n2c2_2006_deid", ), ] DEFAULT_CONFIG_NAME = "n2c2_2006_deid_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "record_id": datasets.Value("string"), "text": datasets.Value("string"), "phi": datasets.Sequence(datasets.Value("string")), } ) elif self.config.schema == "bigbio_kb": features = kb_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=str(_LICENSE), citation=_CITATION, ) def _split_generators( self, dl_manager: datasets.DownloadManager ) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" if self.config.data_dir is None: raise ValueError( "This is a local dataset. Please pass the data_dir kwarg to load_dataset." ) else: data_dir = self.config.data_dir return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_dir": data_dir, "corpus_fname": "deid_surrogate_train_all_version2.zip", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_dir": data_dir, "corpus_fname": "deid_surrogate_test_all_groundtruth_version2.zip", }, ), ] def _generate_examples(self, data_dir: str, corpus_fname: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" fpath = os.path.join(data_dir, corpus_fname) # samples = _read_zip(path) if self.config.schema == "source": for document in self._generate_parsed_documents(fpath): yield document["record_id"], document elif self.config.schema == "bigbio_kb": uid = it.count(0) for document in self._generate_parsed_documents(fpath): document["id"] = next(uid) document["document_id"] = document.pop("record_id") entity_list = document.pop("phi") full_text = document.pop("text") entities_ = [] for entity in entity_list: entities_.append( { "id": next(uid), "type": entity["type"], "text": entity["text"], "offsets": entity["offsets"], "normalized": entity["normalized"], } ) document["entities"] = entities_ document["passages"] = [ { "id": next(uid), "type": "full_text", "text": [full_text], "offsets": [[0, len(full_text)]], }, ] # additional fields required that can be empty document["relations"] = [] document["events"] = [] document["coreferences"] = [] yield document["document_id"], document def _generate_parsed_documents(self, file_path): _, filename = os.path.split(file_path) zipped = zipfile.ZipFile(file_path, "r") file = zipped.read(filename.split(".")[0] + ".xml") # There is an issue with the train file. There is a bad tag in line 25722 if filename == "deid_surrogate_train_all_version2.zip": bad_tag = """25th of July""".encode( "utf-8" ) replacement_tag = """25th of July""".encode("utf-8") file = file.replace(bad_tag, replacement_tag, 1) root = et.fromstring(file) documents = root.findall("./RECORD") record_regex = r"" text_regex = r"|" file_string = str(file) record_matches = list(re.finditer(record_regex, file_string)) n_matches = len(record_matches) if len(documents) != n_matches / 2: raise ValueError( """the records found thourgh regex are not the same as the ones found using xmltree""" ) # counter for the documents in xml k = 0 for i in range(0, n_matches, 2): # find beginning and end of a section record_start = record_matches[i].span()[1] record_end = record_matches[i + 1].span()[0] record_section = file_string[record_start:record_end] # find only the text section text_matches = list(re.finditer(text_regex, record_section)) if len(text_matches) > 2: raise ValueError("It should only be one match for text within a record") text_start = text_matches[0].span()[1] text_end = text_matches[1].span()[0] # remove new line at the beginning and the end full_text_with_tags = record_section[text_start:text_end].strip("\\n") # Remove special characters full_text_with_tags = self._remove_special_characters(full_text_with_tags) # find all the PHI tags to process them one by one document = documents[k] phi_xml_tags = document.findall("./TEXT/PHI") k += 1 entities, clean_text = self._extract_tags_text_spans( full_text_with_tags=full_text_with_tags, phi_list=phi_xml_tags ) document_dict = { "record_id": document.attrib["ID"], "text": clean_text, "phi": entities, } yield document_dict def _extract_tags_text_spans( self, full_text_with_tags: str, phi_list: List[et.Element] ) -> List[Dict]: """ Method to extract all PHI tags from within the XML Note: There are entities with the same text but different tags. Example "Head" Type Doctor/Patient Because of this the method needs to check first for it and then assumes the retrieval order by the xml library and get the proper spans for each one """ entities = [] for phi in phi_list: entity_text = phi.text entity_type = phi.attrib["TYPE"] phi_regex = re.escape(f"""{entity_text}""") phi_match = re.search(phi_regex, full_text_with_tags) if phi_match is None: print(phi_regex) raise ValueError(f"PHI tag {phi_regex} not found") entity_start = phi_match.span()[0] entity_end = entity_start + len(entity_text) # Substitute in the original text to eliminate the current tag # only replace the first occurrence full_text_with_tags = re.sub( pattern=phi_regex, repl=entity_text, string=full_text_with_tags, count=1 ) # check that the text within the span is the same as the entity text if entity_text != full_text_with_tags[entity_start:entity_end]: raise ValueError("Entity text does not have the correct span") # save the entities entities.append( { "text": [entity_text], "type": entity_type, "offsets": [[entity_start, entity_end]], "normalized": [], } ) # clean the last remaining tag clean_text = re.sub(r"\\n\[ report_end \]", "", full_text_with_tags) return entities, clean_text def _remove_special_characters(self, text: str) -> str: result = text.replace(">", ">") result = result.replace("<", "<") result = result.replace(""", '"') result = result.replace("'", "'") return result