|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
A dataset loader for the n2c2 2018 cohort selection dataset. |
|
|
|
The dataset consists of three archive files, |
|
├── train.zip - 202 records |
|
└── n2c2-t1_gold_standard_test_data.zip - 86 records |
|
|
|
The individual data files (inside the zip and tar archives) come in |
|
xml files that contains text as well as labels. |
|
|
|
|
|
The files comprising this dataset must be on the users local machine |
|
in a single directory that is passed to `datasets.load_dataset` via |
|
the `data_dir` kwarg. This loader script will read the archive files |
|
directly (i.e. the user should not uncompress, untar or unzip any of |
|
the files). |
|
|
|
Data Access from https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/ |
|
""" |
|
|
|
import os |
|
import zipfile |
|
from collections import defaultdict |
|
from typing import List |
|
|
|
import datasets |
|
from lxml import etree |
|
|
|
from .bigbiohub import text_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = False |
|
_LOCAL = True |
|
_CITATION = """\ |
|
@article{DBLP:journals/jamia/StubbsFSHU19, |
|
author = { |
|
Amber Stubbs and |
|
Michele Filannino and |
|
Ergin Soysal and |
|
Samuel Henry and |
|
Ozlem Uzuner |
|
}, |
|
title = {Cohort selection for clinical trials: n2c2 2018 shared task track 1}, |
|
journal = {J. Am. Medical Informatics Assoc.}, |
|
volume = {26}, |
|
number = {11}, |
|
pages = {1163--1171}, |
|
year = {2019}, |
|
url = {https://doi.org/10.1093/jamia/ocz163}, |
|
doi = {10.1093/jamia/ocz163}, |
|
timestamp = {Mon, 15 Jun 2020 16:56:11 +0200}, |
|
biburl = {https://dblp.org/rec/journals/jamia/StubbsFSHU19.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "n2c2_2018_track1" |
|
_DISPLAYNAME = "n2c2 2018 Selection Criteria" |
|
|
|
_DESCRIPTION = """\ |
|
Track 1 of the 2018 National NLP Clinical Challenges shared tasks focused |
|
on identifying which patients in a corpus of longitudinal medical records |
|
meet and do not meet identified selection criteria. |
|
|
|
This shared task aimed to determine whether NLP systems could be trained to identify if patients met or did not meet |
|
a set of selection criteria taken from real clinical trials. The selected criteria required measurement detection ( |
|
“Any HbA1c value between 6.5 and 9.5%”), inference (“Use of aspirin to prevent myocardial infarction”), |
|
temporal reasoning (“Diagnosis of ketoacidosis in the past year”), and expert judgment to assess (“Major |
|
diabetes-related complication”). For the corpus, we used the dataset of American English, longitudinal clinical |
|
narratives from the 2014 i2b2/UTHealth shared task 4. |
|
|
|
The final selected 13 selection criteria are as follows: |
|
1. DRUG-ABUSE: Drug abuse, current or past |
|
2. ALCOHOL-ABUSE: Current alcohol use over weekly recommended limits |
|
3. ENGLISH: Patient must speak English |
|
4. MAKES-DECISIONS: Patient must make their own medical decisions |
|
5. ABDOMINAL: History of intra-abdominal surgery, small or large intestine |
|
resection, or small bowel obstruction. |
|
6. MAJOR-DIABETES: Major diabetes-related complication. For the purposes of |
|
this annotation, we define “major complication” (as opposed to “minor complication”) |
|
as any of the following that are a result of (or strongly correlated with) uncontrolled diabetes: |
|
a. Amputation |
|
b. Kidney damage |
|
c. Skin conditions |
|
d. Retinopathy |
|
e. nephropathy |
|
f. neuropathy |
|
7. ADVANCED-CAD: Advanced cardiovascular disease (CAD). |
|
For the purposes of this annotation, we define “advanced” as having 2 or more of the following: |
|
a. Taking 2 or more medications to treat CAD |
|
b. History of myocardial infarction (MI) |
|
c. Currently experiencing angina |
|
d. Ischemia, past or present |
|
8. MI-6MOS: MI in the past 6 months |
|
9. KETO-1YR: Diagnosis of ketoacidosis in the past year |
|
10. DIETSUPP-2MOS: Taken a dietary supplement (excluding vitamin D) in the past 2 months |
|
11. ASP-FOR-MI: Use of aspirin to prevent MI |
|
12. HBA1C: Any hemoglobin A1c (HbA1c) value between 6.5% and 9.5% |
|
13. CREATININE: Serum creatinine > upper limit of normal |
|
|
|
The training consists of 202 patient records with document-level annotations, 10 records |
|
with textual spans indicating annotator’s evidence for their annotations while test set contains 86. |
|
|
|
Note: |
|
* The inter-annotator average agreement is 84.9% |
|
* Whereabouts of 10 records with textual spans indicating annotator’s evidence are unknown. |
|
However, author did a simple script based validation to check if any of the tags contained any text |
|
in any of the training set and they do not, which confirms that atleast train and test do not |
|
have any evidence tagged alongside corresponding tags. |
|
""" |
|
|
|
_HOMEPAGE = "https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/" |
|
|
|
_LICENSE = 'Data User Agreement' |
|
|
|
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
SOURCE = "source" |
|
BIGBIO_TEXT = "bigbio_text" |
|
|
|
|
|
def _read_zip(file_path): |
|
samples = defaultdict(dict) |
|
with zipfile.ZipFile(file_path) as zf: |
|
for info in zf.infolist(): |
|
|
|
base, filename = os.path.split(info.filename) |
|
_, ext = os.path.splitext(filename) |
|
ext = ext[1:] |
|
sample_id = filename.split(".")[0] |
|
|
|
if ext == "xml" and not filename.startswith("."): |
|
content = zf.read(info).decode("utf-8").encode() |
|
root = etree.XML(content) |
|
text, tags = root.getchildren() |
|
samples[sample_id]["txt"] = text.text |
|
samples[sample_id]["tags"] = {} |
|
for child in tags: |
|
samples[sample_id]["tags"][child.tag] = child.get("met") |
|
|
|
return samples |
|
|
|
|
|
class N2C22018CohortSelectionDataset(datasets.GeneratorBasedBuilder): |
|
"""i2b2 2018 track 1 cohort selection task""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
_SOURCE_CONFIG_NAME = _DATASETNAME + "_" + SOURCE |
|
_BIGBIO_CONFIG_NAME = _DATASETNAME + "_" + BIGBIO_TEXT |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name=_SOURCE_CONFIG_NAME, |
|
version=SOURCE_VERSION, |
|
description=_DATASETNAME + " source schema", |
|
schema=SOURCE, |
|
subset_id=_DATASETNAME, |
|
), |
|
BigBioConfig( |
|
name=_BIGBIO_CONFIG_NAME, |
|
version=BIGBIO_VERSION, |
|
description=_DATASETNAME + " BigBio schema", |
|
schema=BIGBIO_TEXT, |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = _SOURCE_CONFIG_NAME |
|
LABEL_CLASS_NAMES = [ |
|
"ABDOMINAL", |
|
"ADVANCED-CAD", |
|
"ALCOHOL-ABUSE", |
|
"ASP-FOR-MI", |
|
"CREATININE", |
|
"DIETSUPP-2MOS", |
|
"DRUG-ABUSE", |
|
"ENGLISH", |
|
"HBA1C", |
|
"KETO-1YR", |
|
"MAJOR-DIABETES", |
|
"MAKES-DECISIONS", |
|
"MI-6MOS", |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == SOURCE: |
|
labels = { |
|
key: datasets.ClassLabel(names=["met", "not met"]) |
|
for key in self.LABEL_CLASS_NAMES |
|
} |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"tags": labels, |
|
} |
|
) |
|
|
|
elif self.config.schema == BIGBIO_TEXT: |
|
features = text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
|
|
if self.config.data_dir is None or self.config.name is None: |
|
raise ValueError( |
|
"This is a local dataset. Please pass the data_dir and name kwarg to load_dataset." |
|
) |
|
else: |
|
data_dir = self.config.data_dir |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"file_path": os.path.join(data_dir, "train.zip"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"file_path": os.path.join( |
|
data_dir, "n2c2-t1_gold_standard_test_data.zip" |
|
), |
|
}, |
|
), |
|
] |
|
|
|
@staticmethod |
|
def _get_source_sample(sample_id, sample): |
|
return { |
|
"id": sample_id, |
|
"document_id": sample_id, |
|
"text": sample.get("txt", ""), |
|
"tags": sample.get("tags", {}), |
|
} |
|
|
|
@staticmethod |
|
def _get_bigbio_sample(sample_id, sample) -> dict: |
|
|
|
tags = sample.get("tags", None) |
|
if tags: |
|
labels = [name for name, met_status in tags.items() if met_status == "met"] |
|
else: |
|
labels = [] |
|
|
|
return { |
|
"id": sample_id, |
|
"document_id": sample_id, |
|
"text": sample.get("txt", ""), |
|
"labels": labels, |
|
} |
|
|
|
def _generate_examples(self, file_path): |
|
samples = _read_zip(file_path) |
|
|
|
_id = 0 |
|
for sample_id, sample in samples.items(): |
|
|
|
if self.config.name == self._SOURCE_CONFIG_NAME: |
|
yield _id, self._get_source_sample(sample_id, sample) |
|
elif self.config.name == self._BIGBIO_CONFIG_NAME: |
|
yield _id, self._get_bigbio_sample(sample_id, sample) |
|
|
|
_id += 1 |
|
|