|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
NeuoTrialNER is an annotated dataset for named entities in clinical trial registry data in the domain of neurology/psychiatry. |
|
The corpus comprises 1093 clinical trial title and brief summaries from ClinicalTrials.gov. |
|
""" |
|
|
|
import os |
|
from typing import List, Tuple, Dict |
|
import json |
|
|
|
import datasets |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import kb_features |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ['English'] |
|
_PUBMED = False |
|
|
|
_CITATION = """\ |
|
@article{, |
|
author = {}, |
|
title = {}, |
|
journal = {}, |
|
volume = {}, |
|
year = {}, |
|
url = {}, |
|
doi = {}, |
|
biburl = {}, |
|
bibsource = {} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "neurotrial_ner" |
|
_DISPLAYNAME = "NeuroTrialNER" |
|
_DESCRIPTION = """\ |
|
NeuoTrialNER is an annotated dataset for named entities in clinical trial registry data in the domain of neurology/psychiatry. |
|
The corpus comprises 1093 clinical trial title and brief summaries from ClinicalTrials.gov. |
|
It has been annotated by two to three annotators for key trial characteristics, i.e., condition (e.g., Alzheimer's disease), |
|
therapeutic intervention (e.g., aspirin), and control arms (e.g., placebo). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/Ineichen-Group/NeuroTrialNER" |
|
|
|
_LICENSE = 'CC0_1p0' |
|
|
|
_URL = "https://raw.githubusercontent.com/Ineichen-Group/NeuroTrialNER/main/data/annotated_data/bigbio/" |
|
_URLS = { |
|
"train": _URL + "train.json", |
|
"dev": _URL + "dev.json", |
|
"test": _URL + "test.json", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class NeuroTrialNerDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
1093 clinical trial official title and brief summary from ClinicalTrials.gov |
|
annotated for named entities. |
|
""" |
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="neurotrial_ner_source", |
|
version=SOURCE_VERSION, |
|
description="neurotrial_ner source schema", |
|
schema="source", |
|
subset_id="neurotrial_ner", |
|
), |
|
BigBioConfig( |
|
name="neurotrial_ner_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="neurotrial_ner BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="neurotrial_ner", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "neurotrial_ner_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"nctid": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"tokens": datasets.Value("string"), |
|
"token_bio_labels": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"start": datasets.Value("int32"), |
|
"end": datasets.Value("int32"), |
|
"text": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
) |
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = _URLS |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["test"], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["dev"], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
@staticmethod |
|
def get_source_example(uid, entry): |
|
nctid = entry.get("nctid", "").strip() |
|
text = entry.get("text", "").strip() |
|
tokens = entry.get("tokens", "").strip() |
|
token_bio_labels = entry.get("token_bio_labels", "").strip() |
|
entities = entry.get("entities", []) |
|
|
|
|
|
processed_entities = [] |
|
for entity in entities: |
|
start = entity.get("start", 0) |
|
end = entity.get("end", 0) |
|
entity_text = entity.get("text", "").strip() |
|
entity_type = entity.get("type", "").strip() |
|
|
|
processed_entities.append({ |
|
"start": start, |
|
"end": end, |
|
"text": entity_text, |
|
"type": entity_type, |
|
}) |
|
|
|
doc = { |
|
"nctid": nctid, |
|
"text": text, |
|
"tokens": tokens, |
|
"token_bio_labels": token_bio_labels, |
|
"entities": processed_entities, |
|
} |
|
|
|
return uid, doc |
|
|
|
@staticmethod |
|
def get_bigbio_example(uid, entry): |
|
nctid = entry.get("nctid", "").strip() |
|
text = entry.get("text", "").strip() |
|
tokens = entry.get("tokens", "").strip() |
|
token_bio_labels = entry.get("token_bio_labels", "").strip() |
|
entities = entry.get("entities", []) |
|
|
|
|
|
passages = [] |
|
passages.append({ |
|
"id": str(uid) + "-passage-0", |
|
"type": "official_title_brief_summary", |
|
"text": [text], |
|
"offsets": [[0, len(text)]], |
|
}) |
|
|
|
|
|
processed_entities = [] |
|
ii = 0 |
|
for i, entity in enumerate(entities): |
|
start = entity.get("start", 0) |
|
end = entity.get("end", 0) |
|
entity_text = entity.get("text", "").strip() |
|
entity_type = entity.get("type", "").strip() |
|
normalized = entity.get("normalized", []) |
|
|
|
processed_entities.append({ |
|
"id": str(uid) + "-entity-" + str(ii), |
|
"offsets": [[start, end]], |
|
"text": [entity_text], |
|
"type": entity_type, |
|
"normalized": normalized, |
|
}) |
|
ii += 1 |
|
|
|
|
|
doc = { |
|
"id": uid, |
|
"document_id": nctid, |
|
"passages": passages, |
|
"entities": processed_entities, |
|
"events": [], |
|
"coreferences": [], |
|
"relations": [], |
|
} |
|
|
|
return uid, doc |
|
|
|
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
with open(filepath, "r") as f: |
|
data = json.load(f) |
|
uid = 0 |
|
|
|
for entry in data: |
|
if self.config.schema == "source": |
|
yield self.get_source_example(uid, entry) |
|
elif self.config.schema == "bigbio_kb": |
|
yield self.get_bigbio_example(uid, entry) |
|
uid += 1 |
|
|