|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
In order to support research investigating the automatic resolution of word sense ambiguity using natural language |
|
processing techniques, we have constructed this test collection of medical text in which the ambiguities were resolved |
|
by hand. Evaluators were asked to examine instances of an ambiguous word and determine the sense intended by selecting |
|
the Metathesaurus concept (if any) that best represents the meaning of that sense. The test collection consists of 50 |
|
highly frequent ambiguous UMLS concepts from 1998 MEDLINE. Each of the 50 ambiguous cases has 100 ambiguous instances |
|
randomly selected from the 1998 MEDLINE citations. For a total of 5,000 instances. We had a total of 11 evaluators of |
|
which 8 completed 100% of the 5,000 instances, 1 completed 56%, 1 completed 44%, and the final evaluator completed 12% |
|
of the instances. Evaluations were only used when the evaluators completed all 100 instances for a given ambiguity. |
|
|
|
Comment from author: |
|
BigBio schema fixes off by one error of end offset of entities. The source config remains unchanged. |
|
|
|
Instructions on how to load locally: |
|
1) Create directory |
|
2) Download one of the following annotation sets from https://lhncbc.nlm.nih.gov/restricted/ii/areas/WSD/index.html |
|
and put it into the folder: |
|
- Full Reviewed Set |
|
https://lhncbc.nlm.nih.gov/restricted/ii/areas/WSD/downloads/full_reviewed_results.tar.gz |
|
(Link "Full Reviewed Result Set (requires Common Files above)") |
|
subset_id = nlm_wsd_reviewed |
|
- Full Non-Reviewed Set |
|
https://lhncbc.nlm.nih.gov/restricted/ii/areas/WSD/downloads/full_non_reviewed_results.tar.gz |
|
(Link "Full Non-Reviewed Result Set (requires Common Files above)") |
|
subset_id = nlm_wsd_non_reviewed |
|
3) Download https://lhncbc.nlm.nih.gov/restricted/ii/areas/WSD/downloads/UMLS1999.tar.gz (Link "1999 UMLS Data Files") |
|
and put it into the folder |
|
4) Set kwarg data_dir of load_datasets to the path of the directory |
|
""" |
|
|
|
import itertools as it |
|
import re |
|
from dataclasses import dataclass |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = True |
|
_CITATION = """\ |
|
@article{weeber2001developing, |
|
title = "Developing a test collection for biomedical word sense |
|
disambiguation", |
|
author = "Weeber, M and Mork, J G and Aronson, A R", |
|
journal = "Proc AMIA Symp", |
|
pages = "746--750", |
|
year = 2001, |
|
language = "en" |
|
} |
|
""" |
|
|
|
_DATASETNAME = "nlm_wsd" |
|
_DISPLAYNAME = "NLM WSD" |
|
|
|
_DESCRIPTION = """\ |
|
In order to support research investigating the automatic resolution of word sense ambiguity using natural language |
|
processing techniques, we have constructed this test collection of medical text in which the ambiguities were resolved |
|
by hand. Evaluators were asked to examine instances of an ambiguous word and determine the sense intended by selecting |
|
the Metathesaurus concept (if any) that best represents the meaning of that sense. The test collection consists of 50 |
|
highly frequent ambiguous UMLS concepts from 1998 MEDLINE. Each of the 50 ambiguous cases has 100 ambiguous instances |
|
randomly selected from the 1998 MEDLINE citations. For a total of 5,000 instances. We had a total of 11 evaluators of |
|
which 8 completed 100% of the 5,000 instances, 1 completed 56%, 1 completed 44%, and the final evaluator completed 12% |
|
of the instances. Evaluations were only used when the evaluators completed all 100 instances for a given ambiguity. |
|
""" |
|
|
|
_HOMEPAGE = "https://lhncbc.nlm.nih.gov/restricted/ii/areas/WSD/index.html" |
|
|
|
_LICENSE = 'UMLS - Metathesaurus License Agreement' |
|
|
|
_URLS = { |
|
"UMLS": "UMLS1999.tar.gz", |
|
"reviewed": "full_reviewed_results.tar.gz", |
|
"non_reviewed": "full_non_reviewed_results.tar.gz", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_DISAMBIGUATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
@dataclass |
|
class NlmWsdBigBioConfig(BigBioConfig): |
|
schema: str = "source" |
|
name: str = "nlm_wsd_reviewed_source" |
|
version: datasets.Version = datasets.Version(_SOURCE_VERSION) |
|
description: str = "NLM-WSD basic reviewed source schema" |
|
subset_id: str = "nlm_wsd_reviewed" |
|
|
|
|
|
class NlmWsdDataset(datasets.GeneratorBasedBuilder): |
|
"""Biomedical Word Sense Disambiguation (WSD).""" |
|
|
|
uid = it.count(0) |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
NlmWsdBigBioConfig( |
|
name="nlm_wsd_non_reviewed_source", |
|
version=SOURCE_VERSION, |
|
description="NLM-WSD basic non reviewed source schema", |
|
schema="source", |
|
subset_id="nlm_wsd_non_reviewed", |
|
), |
|
NlmWsdBigBioConfig( |
|
name="nlm_wsd_non_reviewed_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="NLM-WSD basic non reviewed BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="nlm_wsd_non_reviewed", |
|
), |
|
NlmWsdBigBioConfig( |
|
name="nlm_wsd_reviewed_source", |
|
version=SOURCE_VERSION, |
|
description="NLM-WSD basic reviewed source schema", |
|
schema="source", |
|
subset_id="nlm_wsd_reviewed", |
|
), |
|
NlmWsdBigBioConfig( |
|
name="nlm_wsd_reviewed_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="NLM-WSD basic reviewed BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="nlm_wsd_reviewed", |
|
), |
|
] |
|
|
|
BUILDER_CONFIG_CLASS = NlmWsdBigBioConfig |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"sentence_id": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
"sentence": { |
|
"text": datasets.Value("string"), |
|
"ambiguous_word": datasets.Value("string"), |
|
"ambiguous_word_alias": datasets.Value("string"), |
|
"offsets_context": datasets.Sequence(datasets.Value("int32")), |
|
"offsets_ambiguity": datasets.Sequence(datasets.Value("int32")), |
|
"context": datasets.Value("string"), |
|
}, |
|
"citation": { |
|
"text": datasets.Value("string"), |
|
"ambiguous_word": datasets.Value("string"), |
|
"ambiguous_word_alias": datasets.Value("string"), |
|
"offsets_context": datasets.Sequence(datasets.Value("int32")), |
|
"offsets_ambiguity": datasets.Sequence(datasets.Value("int32")), |
|
"context": datasets.Value("string"), |
|
}, |
|
"choices": [ |
|
{ |
|
"label": datasets.Value("string"), |
|
"concept": datasets.Value("string"), |
|
"cui": datasets.Value("string"), |
|
"type": [datasets.Value("string")], |
|
} |
|
], |
|
} |
|
) |
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
if self.config.data_dir is None: |
|
raise ValueError( |
|
"This is a local dataset. Please pass the data_dir kwarg to load_dataset." |
|
) |
|
else: |
|
data_dir = Path(self.config.data_dir) |
|
umls_dir = dl_manager.download_and_extract(data_dir / _URLS["UMLS"]) |
|
mrcon_path = Path(umls_dir) / "META" / "MRCON" |
|
if self.config.subset_id == "nlm_wsd_reviewed": |
|
ann_dir = dl_manager.download_and_extract(data_dir / _URLS["reviewed"]) |
|
ann_dir = Path(ann_dir) / "Reviewed_Results" |
|
else: |
|
ann_dir = dl_manager.download_and_extract( |
|
data_dir / _URLS["non_reviewed"] |
|
) |
|
ann_dir = Path(ann_dir) / "Non-Reviewed_Results" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"mrcon_path": mrcon_path, |
|
"ann_dir": ann_dir, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, mrcon_path: Path, ann_dir: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
|
|
umls_map = {} |
|
with mrcon_path.open() as f: |
|
content = f.readlines() |
|
content = [x.strip() for x in content] |
|
for line in content: |
|
fields = line.split("|") |
|
assert len(fields) == 9, f"{len(fields)}" |
|
assert fields[0][0] == "C" |
|
umls_map[fields[6]] = fields[0] |
|
|
|
for dir in ann_dir.iterdir(): |
|
if self.config.schema == "source" and dir.is_dir(): |
|
for example in self._generate_parsed_documents(dir, umls_map): |
|
yield next(self.uid), example |
|
|
|
elif self.config.schema == "bigbio_kb" and dir.is_dir(): |
|
for example in self._generate_parsed_documents(dir, umls_map): |
|
yield next(self.uid), self._source_to_kb(example) |
|
|
|
def _generate_parsed_documents(self, dir, umls_map): |
|
|
|
|
|
choices = [] |
|
choices_path = dir / "choices" |
|
with choices_path.open() as f: |
|
content = f.readlines() |
|
content = [x.strip() for x in content] |
|
for line in content: |
|
label, concept, *type = line.split("|") |
|
type = [x.split(", ")[1] for x in type] |
|
m = re.search(r"(?<=\().+(?=\))", concept) |
|
if m is None: |
|
choices.append( |
|
{"label": label, "concept": concept, "type": type, "cui": ""} |
|
) |
|
else: |
|
concept = m.group() |
|
choices.append( |
|
{ |
|
"label": label, |
|
"concept": concept, |
|
"type": type, |
|
"cui": umls_map[concept], |
|
} |
|
) |
|
|
|
file_path = dir / f"{dir.name}_set" |
|
with file_path.open() as f: |
|
for raw_document in self._generate_raw_documents(f): |
|
document = {} |
|
id, document_id, label = raw_document[0].strip().split("|") |
|
|
|
info_sentence = self._parse_ambig_pos_info(raw_document[2].strip()) |
|
info_sentence["text"] = raw_document[1] |
|
|
|
info_citation = self._parse_ambig_pos_info(raw_document[-1].strip()) |
|
n_cit = len(raw_document) - 3 |
|
info_citation["text"] = "".join(raw_document[3 : 3 + n_cit]) |
|
|
|
document = { |
|
"id": id, |
|
"sentence_id": document_id, |
|
"label": label, |
|
"sentence": info_sentence, |
|
"citation": info_citation, |
|
"choices": choices, |
|
} |
|
yield document |
|
|
|
def _generate_raw_documents(self, fstream): |
|
raw_document = [] |
|
for line in fstream: |
|
if line.strip(): |
|
raw_document.append(line) |
|
elif raw_document: |
|
yield raw_document |
|
raw_document = [] |
|
|
|
if raw_document: |
|
yield raw_document |
|
|
|
def _parse_ambig_pos_info(self, line): |
|
infos = line.split("|") |
|
assert len(infos) == 8, f"{len(infos)}" |
|
pos_info = { |
|
"ambiguous_word": infos[0], |
|
"ambiguous_word_alias": infos[1], |
|
"offsets_context": [infos[2], infos[3]], |
|
"offsets_ambiguity": [infos[4], infos[5]], |
|
"context": infos[6], |
|
} |
|
return pos_info |
|
|
|
def _source_to_kb(self, example): |
|
document_ = {} |
|
document_["events"] = [] |
|
document_["relations"] = [] |
|
document_["coreferences"] = [] |
|
document_["id"] = next(self.uid) |
|
document_["document_id"] = example["sentence_id"].split(".")[0] |
|
|
|
citation = example["citation"] |
|
document_["passages"] = [ |
|
{ |
|
"id": next(self.uid), |
|
"type": "", |
|
"text": [citation["text"]], |
|
"offsets": [[0, len(citation["text"])]], |
|
} |
|
] |
|
choices = {x["label"]: x["cui"] for x in example["choices"]} |
|
types = {x["label"]: x["type"][0] for x in example["choices"]} |
|
|
|
db_id = ( |
|
"" if example["label"] in ["None", "UNDEF"] else choices[example["label"]] |
|
) |
|
type = "" if example["label"] in ["None", "UNDEF"] else types[example["label"]] |
|
document_["entities"] = [ |
|
{ |
|
"id": next(self.uid), |
|
"type": type, |
|
"text": [citation["ambiguous_word_alias"]], |
|
"offsets": [ |
|
[ |
|
int(citation["offsets_ambiguity"][0]), |
|
int(citation["offsets_ambiguity"][1]) + 1, |
|
] |
|
], |
|
"normalized": [{"db_name": "UMLS", "db_id": db_id}], |
|
} |
|
] |
|
return document_ |
|
|