gabrielaltay
commited on
Commit
•
a0626f1
1
Parent(s):
9751996
upload hubscripts/osiris_hub.py to hub from bigbio repo
Browse files
osiris.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import itertools
|
17 |
+
import os
|
18 |
+
import uuid
|
19 |
+
import xml.etree.ElementTree as ET
|
20 |
+
from typing import List
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
from numpy import int32
|
24 |
+
|
25 |
+
from .bigbiohub import kb_features
|
26 |
+
from .bigbiohub import BigBioConfig
|
27 |
+
from .bigbiohub import Tasks
|
28 |
+
|
29 |
+
_LANGUAGES = ['English']
|
30 |
+
_PUBMED = True
|
31 |
+
_LOCAL = False
|
32 |
+
_CITATION = """\
|
33 |
+
@ARTICLE{Furlong2008,
|
34 |
+
author = {Laura I Furlong and Holger Dach and Martin Hofmann-Apitius and Ferran Sanz},
|
35 |
+
title = {OSIRISv1.2: a named entity recognition system for sequence variants
|
36 |
+
of genes in biomedical literature.},
|
37 |
+
journal = {BMC Bioinformatics},
|
38 |
+
year = {2008},
|
39 |
+
volume = {9},
|
40 |
+
pages = {84},
|
41 |
+
doi = {10.1186/1471-2105-9-84},
|
42 |
+
pii = {1471-2105-9-84},
|
43 |
+
pmid = {18251998},
|
44 |
+
timestamp = {2013.01.15},
|
45 |
+
url = {http://dx.doi.org/10.1186/1471-2105-9-84}
|
46 |
+
}
|
47 |
+
"""
|
48 |
+
|
49 |
+
_DATASETNAME = "osiris"
|
50 |
+
_DISPLAYNAME = "OSIRIS"
|
51 |
+
|
52 |
+
_DESCRIPTION = """\
|
53 |
+
The OSIRIS corpus is a set of MEDLINE abstracts manually annotated
|
54 |
+
with human variation mentions. The corpus is distributed under the terms
|
55 |
+
of the Creative Commons Attribution License
|
56 |
+
Creative Commons Attribution 3.0 Unported License,
|
57 |
+
which permits unrestricted use, distribution, and reproduction in any medium,
|
58 |
+
provided the original work is properly cited (Furlong et al, BMC Bioinformatics 2008, 9:84).
|
59 |
+
"""
|
60 |
+
|
61 |
+
_HOMEPAGE = "https://sites.google.com/site/laurafurlongweb/databases-and-tools/corpora/"
|
62 |
+
|
63 |
+
|
64 |
+
_LICENSE = 'Creative Commons Attribution 3.0 Unported'
|
65 |
+
|
66 |
+
_URLS = {
|
67 |
+
_DATASETNAME: [
|
68 |
+
"https://github.com/rockt/SETH/blob/master/resources/OSIRIS/corpus.xml?raw=true "
|
69 |
+
]
|
70 |
+
}
|
71 |
+
|
72 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
|
73 |
+
|
74 |
+
|
75 |
+
_SOURCE_VERSION = "1.2.0"
|
76 |
+
|
77 |
+
_BIGBIO_VERSION = "1.0.0"
|
78 |
+
|
79 |
+
|
80 |
+
class Osiris(datasets.GeneratorBasedBuilder):
|
81 |
+
"""
|
82 |
+
The OSIRIS corpus is a set of MEDLINE abstracts manually annotated
|
83 |
+
with human variation mentions.
|
84 |
+
"""
|
85 |
+
|
86 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
87 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
88 |
+
|
89 |
+
# You will be able to load the "source" or "bigbio" configurations with
|
90 |
+
# ds_source = datasets.load_dataset('my_dataset', name='source')
|
91 |
+
# ds_bigbio = datasets.load_dataset('my_dataset', name='bigbio')
|
92 |
+
|
93 |
+
# For local datasets you can make use of the `data_dir` and `data_files` kwargs
|
94 |
+
# https://huggingface.co/docs/datasets/add_dataset.html#downloading-data-files-and-organizing-splits
|
95 |
+
# ds_source = datasets.load_dataset('my_dataset', name='source', data_dir="/path/to/data/files")
|
96 |
+
# ds_bigbio = datasets.load_dataset('my_dataset', name='bigbio', data_dir="/path/to/data/files")
|
97 |
+
|
98 |
+
BUILDER_CONFIGS = [
|
99 |
+
BigBioConfig(
|
100 |
+
name="osiris_source",
|
101 |
+
version=SOURCE_VERSION,
|
102 |
+
description="osiris source schema",
|
103 |
+
schema="source",
|
104 |
+
subset_id="osiris",
|
105 |
+
),
|
106 |
+
BigBioConfig(
|
107 |
+
name="osiris_bigbio_kb",
|
108 |
+
version=BIGBIO_VERSION,
|
109 |
+
description="osiris BigBio schema",
|
110 |
+
schema="bigbio_kb",
|
111 |
+
subset_id="osiris",
|
112 |
+
),
|
113 |
+
]
|
114 |
+
|
115 |
+
DEFAULT_CONFIG_NAME = "osiris_source"
|
116 |
+
|
117 |
+
def _info(self) -> datasets.DatasetInfo:
|
118 |
+
|
119 |
+
if self.config.schema == "source":
|
120 |
+
|
121 |
+
features = datasets.Features(
|
122 |
+
{
|
123 |
+
"Pmid": datasets.Value("string"),
|
124 |
+
"Title": datasets.Value("string"),
|
125 |
+
"Abstract": datasets.Value("string"),
|
126 |
+
"genes": [
|
127 |
+
{
|
128 |
+
"g_id": datasets.Value("string"),
|
129 |
+
"g_lex": datasets.Value("string"),
|
130 |
+
"offsets": [[datasets.Value("int32")]],
|
131 |
+
}
|
132 |
+
],
|
133 |
+
"variants": [
|
134 |
+
{
|
135 |
+
"v_id": datasets.Value("string"),
|
136 |
+
"v_lex": datasets.Value("string"),
|
137 |
+
"v_norm": datasets.Value("string"),
|
138 |
+
"offsets": [[datasets.Value("int32")]],
|
139 |
+
}
|
140 |
+
],
|
141 |
+
}
|
142 |
+
)
|
143 |
+
|
144 |
+
elif self.config.schema == "bigbio_kb":
|
145 |
+
features = kb_features
|
146 |
+
|
147 |
+
return datasets.DatasetInfo(
|
148 |
+
description=_DESCRIPTION,
|
149 |
+
features=features,
|
150 |
+
homepage=_HOMEPAGE,
|
151 |
+
license=str(_LICENSE),
|
152 |
+
citation=_CITATION,
|
153 |
+
)
|
154 |
+
|
155 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
156 |
+
|
157 |
+
urls = _URLS[_DATASETNAME]
|
158 |
+
data_dir = dl_manager.download(urls)
|
159 |
+
|
160 |
+
return [
|
161 |
+
datasets.SplitGenerator(
|
162 |
+
name=datasets.Split.TRAIN,
|
163 |
+
# Whatever you put in gen_kwargs will be passed to _generate_examples
|
164 |
+
gen_kwargs={
|
165 |
+
"filepath": os.path.join(data_dir[0]),
|
166 |
+
"split": "data",
|
167 |
+
},
|
168 |
+
)
|
169 |
+
]
|
170 |
+
|
171 |
+
def _get_offsets(self, parent: ET.Element, child: ET.Element) -> List[int32]:
|
172 |
+
"""
|
173 |
+
Retrieves character offsets for child from parent.
|
174 |
+
"""
|
175 |
+
parent_text = " ".join(
|
176 |
+
[
|
177 |
+
" ".join([t for t in c.itertext()])
|
178 |
+
for c in list(parent)
|
179 |
+
if c.tag != "Pmid"
|
180 |
+
]
|
181 |
+
)
|
182 |
+
child_text = " ".join([t for t in child.itertext()])
|
183 |
+
start = parent_text.index(child_text)
|
184 |
+
end = start + len(child_text)
|
185 |
+
return [start, end]
|
186 |
+
|
187 |
+
def _get_dict(self, elem: ET.Element) -> dict:
|
188 |
+
"""
|
189 |
+
Retrieves dict from XML element.
|
190 |
+
"""
|
191 |
+
elem_d = dict()
|
192 |
+
for child in elem:
|
193 |
+
elem_d[child.tag] = {}
|
194 |
+
elem_d[child.tag]["text"] = " ".join([t for t in child.itertext()])
|
195 |
+
|
196 |
+
if child.tag != "Pmid":
|
197 |
+
elem_d[child.tag]["offsets"] = self._get_offsets(elem, child)
|
198 |
+
|
199 |
+
for c in child:
|
200 |
+
elem_d[c.tag] = []
|
201 |
+
|
202 |
+
for c in child:
|
203 |
+
c_dict = c.attrib
|
204 |
+
c_dict["offsets"] = self._get_offsets(elem, c)
|
205 |
+
elem_d[c.tag].append(c.attrib)
|
206 |
+
|
207 |
+
return elem_d
|
208 |
+
|
209 |
+
def _handle_missing_variants(self, row: dict) -> dict:
|
210 |
+
"""
|
211 |
+
If variant is not present in the row this function adds one variant
|
212 |
+
with no data (to make looping though items possible) and returns the new row.
|
213 |
+
These mocked variants will be romoved after parsing.
|
214 |
+
Otherwise returns unchanged row.
|
215 |
+
"""
|
216 |
+
|
217 |
+
if row.get("variant", 0) == 0:
|
218 |
+
row["variant"] = [
|
219 |
+
{"v_id": "", "v_lex": "", "v_norm": "", "offsets": [0, 0]}
|
220 |
+
]
|
221 |
+
return row
|
222 |
+
|
223 |
+
def _get_entities(self, row: dict) -> List[dict]:
|
224 |
+
"""
|
225 |
+
Retrieves two lists of dicts for genes and variants.
|
226 |
+
After that, chains both together.
|
227 |
+
"""
|
228 |
+
genes = [
|
229 |
+
{
|
230 |
+
"id": str(uuid.uuid4()),
|
231 |
+
"offsets": [gene["offsets"]],
|
232 |
+
"text": [gene["g_lex"]],
|
233 |
+
"type": "gene",
|
234 |
+
"normalized": [{"db_name": "NCBI Gene", "db_id": gene["g_id"]}],
|
235 |
+
}
|
236 |
+
for gene in row["gene"]
|
237 |
+
]
|
238 |
+
|
239 |
+
variants = [
|
240 |
+
{
|
241 |
+
"id": str(uuid.uuid4()),
|
242 |
+
"offsets": [variant["offsets"]],
|
243 |
+
"text": [variant["v_lex"]],
|
244 |
+
"type": "variant",
|
245 |
+
"normalized": [
|
246 |
+
{
|
247 |
+
"db_name": "HGVS-like" if variant["v_id"] == "No" else "dbSNP",
|
248 |
+
"db_id": variant["v_norm"]
|
249 |
+
if variant["v_id"] == "No"
|
250 |
+
else variant["v_id"],
|
251 |
+
}
|
252 |
+
],
|
253 |
+
}
|
254 |
+
for variant in row["variant"]
|
255 |
+
if variant["v_id"] != ""
|
256 |
+
]
|
257 |
+
return list(itertools.chain(genes, variants))
|
258 |
+
|
259 |
+
def _generate_examples(self, filepath, split):
|
260 |
+
|
261 |
+
root = ET.parse(filepath).getroot()
|
262 |
+
uid = 0
|
263 |
+
if self.config.schema == "source":
|
264 |
+
for elem in list(root):
|
265 |
+
row = self._get_dict(elem)
|
266 |
+
|
267 |
+
# handling missing variants data
|
268 |
+
row = self._handle_missing_variants(row)
|
269 |
+
uid += 1
|
270 |
+
yield uid, {
|
271 |
+
"Pmid": row["Pmid"]["text"],
|
272 |
+
"Title": {
|
273 |
+
"offsets": [row["Title"]["offsets"]],
|
274 |
+
"text": row["Title"]["text"],
|
275 |
+
},
|
276 |
+
"Abstract": {
|
277 |
+
"offsets": [row["Abstract"]["offsets"]],
|
278 |
+
"text": row["Abstract"]["text"],
|
279 |
+
},
|
280 |
+
"genes": [
|
281 |
+
{
|
282 |
+
"g_id": gene["g_id"],
|
283 |
+
"g_lex": gene["g_lex"],
|
284 |
+
"offsets": [gene["offsets"]],
|
285 |
+
}
|
286 |
+
for gene in row["gene"]
|
287 |
+
],
|
288 |
+
"variants": [
|
289 |
+
{
|
290 |
+
"v_id": variant["v_id"],
|
291 |
+
"v_lex": variant["v_lex"],
|
292 |
+
"v_norm": variant["v_norm"],
|
293 |
+
"offsets": [variant["offsets"]],
|
294 |
+
}
|
295 |
+
for variant in row["variant"]
|
296 |
+
],
|
297 |
+
}
|
298 |
+
|
299 |
+
elif self.config.schema == "bigbio_kb":
|
300 |
+
|
301 |
+
for elem in list(root):
|
302 |
+
row = self._get_dict(elem)
|
303 |
+
|
304 |
+
# handling missing variants data
|
305 |
+
row = self._handle_missing_variants(row)
|
306 |
+
uid += 1
|
307 |
+
yield uid, {
|
308 |
+
"id": str(uid),
|
309 |
+
"document_id": row["Pmid"]["text"],
|
310 |
+
"passages": [
|
311 |
+
{
|
312 |
+
"id": str(uuid.uuid4()),
|
313 |
+
"type": "title",
|
314 |
+
"text": [row["Title"]["text"]],
|
315 |
+
"offsets": [row["Title"]["offsets"]],
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"id": str(uuid.uuid4()),
|
319 |
+
"type": "abstract",
|
320 |
+
"text": [row["Abstract"]["text"]],
|
321 |
+
"offsets": [row["Abstract"]["offsets"]],
|
322 |
+
},
|
323 |
+
],
|
324 |
+
"entities": self._get_entities(row),
|
325 |
+
"relations": [],
|
326 |
+
"events": [],
|
327 |
+
"coreferences": [],
|
328 |
+
}
|