|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from .bigbiohub import BigBioConfig, Tasks, pairs_features |
|
|
|
_LANGUAGES = ["English"] |
|
_PUBMED = False |
|
_LOCAL = True |
|
|
|
_CITATION = """\ |
|
@misc{ask9medicaldata, |
|
author = {Khan, Arbaaz}, |
|
title = {Sentiment Analysis for Medical Drugs}, |
|
year = {2019}, |
|
url = {https://www.kaggle.com/datasets/arbazkhan971/analyticvidhyadatasetsentiment}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "samd" |
|
_DISPLAYNAME = "Sentiment Analysis for Medical Drugs" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains comments about patients and the sentiment in those comments about a specific drug that's \ |
|
mentioned. |
|
|
|
The dataset has to be download from the Kaggle challenge: |
|
https://www.kaggle.com/datasets/arbazkhan971/analyticvidhyadatasetsentiment/data |
|
""" |
|
|
|
_HOMEPAGE = "https://www.kaggle.com/datasets/arbazkhan971/analyticvidhyadatasetsentiment" |
|
_LICENSE = "UNKNOWN" |
|
|
|
_URLS = {} |
|
|
|
_SUPPORTED_TASKS = [Tasks.TEXT_PAIRS_CLASSIFICATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class SentimentAnalysisMedicalDrugsDatatset(datasets.GeneratorBasedBuilder): |
|
"""This dataset contains comments about patients and the sentiment in those comments about |
|
a specific drug that's mentioned. |
|
|
|
1 - Negative sentiment |
|
2 - Positive sentiment |
|
0 - Neutral |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
BigBioConfig( |
|
name=f"{_DATASETNAME}_bigbio_pairs", |
|
version=BIGBIO_VERSION, |
|
description=f"{_DATASETNAME} BigBio schema", |
|
schema="bigbio_pairs", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
|
|
features = datasets.Features( |
|
{ |
|
"hash": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"drug_name": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_pairs": |
|
features = pairs_features |
|
else: |
|
raise NotImplementedError(f"Schema {self.config.schema} is not supported") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
|
|
if self.config.data_dir is None: |
|
raise ValueError( |
|
"This is a local dataset. Please download the data from Kaggle abd pass the directory containing " |
|
"both data files via data_dir kwarg to load_dataset." |
|
) |
|
else: |
|
data_dir = self.config.data_dir |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "train_F3WbcTw.csv"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "test_tOlRoBf.csv"), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
csv_reader = pd.read_csv(filepath, dtype="object") |
|
for _cols, line in csv_reader.iterrows(): |
|
if self.config.schema == "source": |
|
document = { |
|
"hash": line["unique_hash"], |
|
"text": line["text"], |
|
"drug_name": line["drug"], |
|
"label": line["sentiment"] if split == "train" else None, |
|
} |
|
|
|
yield document["hash"], document |
|
|
|
elif self.config.schema == "bigbio_pairs": |
|
document = { |
|
"id": line["unique_hash"], |
|
"document_id": line["unique_hash"], |
|
"text_1": line["text"], |
|
"text_2": line["drug"], |
|
"label": line["sentiment"] if split == "train" else None, |
|
} |
|
|
|
yield document["id"], document |
|
|
|
else: |
|
raise NotImplementedError(f"Schema {self.config.schema} is not supported") |
|
|