Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
scitail / tmp-scitail.py
gabrielaltay's picture
Upload tmp-scitail.py
8a85cab
raw
history blame
6.05 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The SciTail dataset is an entailment dataset created from multiple-choice science exams and
web sentences. Each question and the correct answer choice are converted into an assertive
statement to form the hypothesis. We use information retrieval to obtain relevant text from
a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource
the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order
to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with
entails label and 16,925 examples with neutral label.
"""
import os
import datasets
import pandas as pd
from bigbio.utils import schemas
from bigbio.utils.configs import BigBioConfig
from bigbio.utils.constants import Lang, Tasks
from bigbio.utils.license import Licenses
_LANGUAGES = [Lang.EN]
_PUBMED = False
_LOCAL = False
_CITATION = """\
@inproceedings{scitail,
author = {Tushar Khot and Ashish Sabharwal and Peter Clark},
booktitle = {AAAI}
title = {SciTail: A Textual Entailment Dataset from Science Question Answering},
year = {2018}
}
"""
_DATASETNAME = "scitail"
_DISPLAYNAME = "SciTail"
_DESCRIPTION = """\
The SciTail dataset is an entailment dataset created from multiple-choice science exams and
web sentences. Each question and the correct answer choice are converted into an assertive
statement to form the hypothesis. We use information retrieval to obtain relevant text from
a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource
the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order
to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with
entails label and 16,925 examples with neutral label.
"""
_HOMEPAGE = "https://allenai.org/data/scitail"
_LICENSE = Licenses.APACHE_2p0
_URLS = {
_DATASETNAME: "https://ai2-public-datasets.s3.amazonaws.com/scitail/SciTailV1.1.zip",
}
_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT]
_SOURCE_VERSION = "1.1.0"
_BIGBIO_VERSION = "1.0.0"
LABEL_MAP = {"entails": "entailment", "neutral": "neutral"}
class SciTailDataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="scitail_source",
version=SOURCE_VERSION,
description="SciTail source schema",
schema="source",
subset_id="scitail",
),
BigBioConfig(
name="scitail_bigbio_te",
version=BIGBIO_VERSION,
description="SciTail BigBio schema",
schema="bigbio_te",
subset_id="scitail",
),
]
DEFAULT_CONFIG_NAME = "scitail_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
elif self.config.schema == "bigbio_te":
features = schemas.entailment_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_train.tsv"
),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_test.tsv"
),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_dev.tsv"
),
},
),
]
def _generate_examples(self, filepath):
# since examples can contain quotes mid text set quoting to QUOTE_NONE (3) when reading tsv
# e.g.: ... and apply specific "tools" to examples and ...
data = pd.read_csv(
filepath, sep="\t", names=["premise", "hypothesis", "label"], quoting=3
)
data["id"] = data.index
if self.config.schema == "source":
for _, row in data.iterrows():
yield row["id"], row.to_dict()
elif self.config.schema == "bigbio_te":
# normalize labels
data["label"] = data["label"].apply(lambda x: LABEL_MAP[x])
for _, row in data.iterrows():
yield row["id"], row.to_dict()