Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
gabrielaltay commited on
Commit
00e441e
·
1 Parent(s): 4070947

Create new file

Browse files
Files changed (1) hide show
  1. scitail.py +189 -0
scitail.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """
17
+ The SciTail dataset is an entailment dataset created from multiple-choice science exams and
18
+ web sentences. Each question and the correct answer choice are converted into an assertive
19
+ statement to form the hypothesis. We use information retrieval to obtain relevant text from
20
+ a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource
21
+ the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order
22
+ to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with
23
+ entails label and 16,925 examples with neutral label.
24
+ """
25
+ from dataclasses import dataclass
26
+ import os
27
+
28
+ import datasets
29
+ import pandas as pd
30
+
31
+
32
+ @dataclass
33
+ class BigBioConfig(datasets.BuilderConfig):
34
+ """BuilderConfig for BigBio."""
35
+
36
+ name: str = None
37
+ version: datasets.Version = None
38
+ description: str = None
39
+ schema: str = None
40
+ subset_id: str = None
41
+
42
+ _LANGUAGES = ["EN"]
43
+ _PUBMED = False
44
+ _LOCAL = False
45
+ _CITATION = """\
46
+ @inproceedings{scitail,
47
+ author = {Tushar Khot and Ashish Sabharwal and Peter Clark},
48
+ booktitle = {AAAI}
49
+ title = {SciTail: A Textual Entailment Dataset from Science Question Answering},
50
+ year = {2018}
51
+ }
52
+ """
53
+
54
+ _DATASETNAME = "scitail"
55
+ _DISPLAYNAME = "SciTail"
56
+
57
+ _DESCRIPTION = """\
58
+ The SciTail dataset is an entailment dataset created from multiple-choice science exams and
59
+ web sentences. Each question and the correct answer choice are converted into an assertive
60
+ statement to form the hypothesis. We use information retrieval to obtain relevant text from
61
+ a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource
62
+ the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order
63
+ to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with
64
+ entails label and 16,925 examples with neutral label.
65
+ """
66
+
67
+ _HOMEPAGE = "https://allenai.org/data/scitail"
68
+
69
+ _LICENSE = "Apache 2.0"
70
+
71
+ _URLS = {
72
+ _DATASETNAME: "https://ai2-public-datasets.s3.amazonaws.com/scitail/SciTailV1.1.zip",
73
+ }
74
+
75
+ _SUPPORTED_TASKS = ["TEXTUAL_ENTAILMENT"]
76
+
77
+ _SOURCE_VERSION = "1.1.0"
78
+
79
+ _BIGBIO_VERSION = "1.0.0"
80
+
81
+
82
+ LABEL_MAP = {"entails": "entailment", "neutral": "neutral"}
83
+
84
+ entailment_features = datasets.Features(
85
+ {
86
+ "id": datasets.Value("string"),
87
+ "premise": datasets.Value("string"),
88
+ "hypothesis": datasets.Value("string"),
89
+ "label": datasets.Value("string"),
90
+ }
91
+ )
92
+
93
+ class SciTailDataset(datasets.GeneratorBasedBuilder):
94
+ """TODO: Short description of my dataset."""
95
+
96
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
97
+ BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
98
+
99
+ BUILDER_CONFIGS = [
100
+ BigBioConfig(
101
+ name="scitail_source",
102
+ version=SOURCE_VERSION,
103
+ description="SciTail source schema",
104
+ schema="source",
105
+ subset_id="scitail",
106
+ ),
107
+ BigBioConfig(
108
+ name="scitail_bigbio_te",
109
+ version=BIGBIO_VERSION,
110
+ description="SciTail BigBio schema",
111
+ schema="bigbio_te",
112
+ subset_id="scitail",
113
+ ),
114
+ ]
115
+
116
+ DEFAULT_CONFIG_NAME = "scitail_source"
117
+
118
+ def _info(self):
119
+
120
+ if self.config.schema == "source":
121
+ features = datasets.Features(
122
+ {
123
+ "id": datasets.Value("string"),
124
+ "premise": datasets.Value("string"),
125
+ "hypothesis": datasets.Value("string"),
126
+ "label": datasets.Value("string"),
127
+ }
128
+ )
129
+
130
+ elif self.config.schema == "bigbio_te":
131
+ features = entailment_features
132
+
133
+ return datasets.DatasetInfo(
134
+ description=_DESCRIPTION,
135
+ features=features,
136
+ homepage=_HOMEPAGE,
137
+ license=str(_LICENSE),
138
+ citation=_CITATION,
139
+ )
140
+
141
+ def _split_generators(self, dl_manager):
142
+
143
+ urls = _URLS[_DATASETNAME]
144
+ data_dir = dl_manager.download_and_extract(urls)
145
+
146
+ return [
147
+ datasets.SplitGenerator(
148
+ name=datasets.Split.TRAIN,
149
+ gen_kwargs={
150
+ "filepath": os.path.join(
151
+ data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_train.tsv"
152
+ ),
153
+ },
154
+ ),
155
+ datasets.SplitGenerator(
156
+ name=datasets.Split.TEST,
157
+ gen_kwargs={
158
+ "filepath": os.path.join(
159
+ data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_test.tsv"
160
+ ),
161
+ },
162
+ ),
163
+ datasets.SplitGenerator(
164
+ name=datasets.Split.VALIDATION,
165
+ gen_kwargs={
166
+ "filepath": os.path.join(
167
+ data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_dev.tsv"
168
+ ),
169
+ },
170
+ ),
171
+ ]
172
+
173
+ def _generate_examples(self, filepath):
174
+ # since examples can contain quotes mid text set quoting to QUOTE_NONE (3) when reading tsv
175
+ # e.g.: ... and apply specific "tools" to examples and ...
176
+ data = pd.read_csv(
177
+ filepath, sep="\t", names=["premise", "hypothesis", "label"], quoting=3
178
+ )
179
+ data["id"] = data.index
180
+
181
+ if self.config.schema == "source":
182
+ for _, row in data.iterrows():
183
+ yield row["id"], row.to_dict()
184
+
185
+ elif self.config.schema == "bigbio_te":
186
+ # normalize labels
187
+ data["label"] = data["label"].apply(lambda x: LABEL_MAP[x])
188
+ for _, row in data.iterrows():
189
+ yield row["id"], row.to_dict()