gabrielaltay
commited on
Commit
·
1b7c69c
1
Parent(s):
adc6d57
Delete scitail.py
Browse files- scitail.py +0 -175
scitail.py
DELETED
@@ -1,175 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
"""
|
17 |
-
The SciTail dataset is an entailment dataset created from multiple-choice science exams and
|
18 |
-
web sentences. Each question and the correct answer choice are converted into an assertive
|
19 |
-
statement to form the hypothesis. We use information retrieval to obtain relevant text from
|
20 |
-
a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource
|
21 |
-
the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order
|
22 |
-
to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with
|
23 |
-
entails label and 16,925 examples with neutral label.
|
24 |
-
"""
|
25 |
-
|
26 |
-
import os
|
27 |
-
|
28 |
-
import datasets
|
29 |
-
import pandas as pd
|
30 |
-
|
31 |
-
from bigbio.utils import schemas
|
32 |
-
from bigbio.utils.configs import BigBioConfig
|
33 |
-
from bigbio.utils.constants import Lang, Tasks
|
34 |
-
from bigbio.utils.license import Licenses
|
35 |
-
|
36 |
-
_LANGUAGES = [Lang.EN]
|
37 |
-
_PUBMED = False
|
38 |
-
_LOCAL = False
|
39 |
-
_CITATION = """\
|
40 |
-
@inproceedings{scitail,
|
41 |
-
author = {Tushar Khot and Ashish Sabharwal and Peter Clark},
|
42 |
-
booktitle = {AAAI}
|
43 |
-
title = {SciTail: A Textual Entailment Dataset from Science Question Answering},
|
44 |
-
year = {2018}
|
45 |
-
}
|
46 |
-
"""
|
47 |
-
|
48 |
-
_DATASETNAME = "scitail"
|
49 |
-
_DISPLAYNAME = "SciTail"
|
50 |
-
|
51 |
-
_DESCRIPTION = """\
|
52 |
-
The SciTail dataset is an entailment dataset created from multiple-choice science exams and
|
53 |
-
web sentences. Each question and the correct answer choice are converted into an assertive
|
54 |
-
statement to form the hypothesis. We use information retrieval to obtain relevant text from
|
55 |
-
a large text corpus of web sentences, and use these sentences as a premise P. We crowdsource
|
56 |
-
the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order
|
57 |
-
to create the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with
|
58 |
-
entails label and 16,925 examples with neutral label.
|
59 |
-
"""
|
60 |
-
|
61 |
-
_HOMEPAGE = "https://allenai.org/data/scitail"
|
62 |
-
|
63 |
-
_LICENSE = Licenses.APACHE_2p0
|
64 |
-
|
65 |
-
_URLS = {
|
66 |
-
_DATASETNAME: "https://ai2-public-datasets.s3.amazonaws.com/scitail/SciTailV1.1.zip",
|
67 |
-
}
|
68 |
-
|
69 |
-
_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT]
|
70 |
-
|
71 |
-
_SOURCE_VERSION = "1.1.0"
|
72 |
-
|
73 |
-
_BIGBIO_VERSION = "1.0.0"
|
74 |
-
|
75 |
-
|
76 |
-
LABEL_MAP = {"entails": "entailment", "neutral": "neutral"}
|
77 |
-
|
78 |
-
|
79 |
-
class SciTailDataset(datasets.GeneratorBasedBuilder):
|
80 |
-
"""TODO: Short description of my dataset."""
|
81 |
-
|
82 |
-
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
83 |
-
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
84 |
-
|
85 |
-
BUILDER_CONFIGS = [
|
86 |
-
BigBioConfig(
|
87 |
-
name="scitail_source",
|
88 |
-
version=SOURCE_VERSION,
|
89 |
-
description="SciTail source schema",
|
90 |
-
schema="source",
|
91 |
-
subset_id="scitail",
|
92 |
-
),
|
93 |
-
BigBioConfig(
|
94 |
-
name="scitail_bigbio_te",
|
95 |
-
version=BIGBIO_VERSION,
|
96 |
-
description="SciTail BigBio schema",
|
97 |
-
schema="bigbio_te",
|
98 |
-
subset_id="scitail",
|
99 |
-
),
|
100 |
-
]
|
101 |
-
|
102 |
-
DEFAULT_CONFIG_NAME = "scitail_source"
|
103 |
-
|
104 |
-
def _info(self):
|
105 |
-
|
106 |
-
if self.config.schema == "source":
|
107 |
-
features = datasets.Features(
|
108 |
-
{
|
109 |
-
"id": datasets.Value("string"),
|
110 |
-
"premise": datasets.Value("string"),
|
111 |
-
"hypothesis": datasets.Value("string"),
|
112 |
-
"label": datasets.Value("string"),
|
113 |
-
}
|
114 |
-
)
|
115 |
-
|
116 |
-
elif self.config.schema == "bigbio_te":
|
117 |
-
features = schemas.entailment_features
|
118 |
-
|
119 |
-
return datasets.DatasetInfo(
|
120 |
-
description=_DESCRIPTION,
|
121 |
-
features=features,
|
122 |
-
homepage=_HOMEPAGE,
|
123 |
-
license=str(_LICENSE),
|
124 |
-
citation=_CITATION,
|
125 |
-
)
|
126 |
-
|
127 |
-
def _split_generators(self, dl_manager):
|
128 |
-
|
129 |
-
urls = _URLS[_DATASETNAME]
|
130 |
-
data_dir = dl_manager.download_and_extract(urls)
|
131 |
-
|
132 |
-
return [
|
133 |
-
datasets.SplitGenerator(
|
134 |
-
name=datasets.Split.TRAIN,
|
135 |
-
gen_kwargs={
|
136 |
-
"filepath": os.path.join(
|
137 |
-
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_train.tsv"
|
138 |
-
),
|
139 |
-
},
|
140 |
-
),
|
141 |
-
datasets.SplitGenerator(
|
142 |
-
name=datasets.Split.TEST,
|
143 |
-
gen_kwargs={
|
144 |
-
"filepath": os.path.join(
|
145 |
-
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_test.tsv"
|
146 |
-
),
|
147 |
-
},
|
148 |
-
),
|
149 |
-
datasets.SplitGenerator(
|
150 |
-
name=datasets.Split.VALIDATION,
|
151 |
-
gen_kwargs={
|
152 |
-
"filepath": os.path.join(
|
153 |
-
data_dir, "SciTailV1.1", "tsv_format", "scitail_1.0_dev.tsv"
|
154 |
-
),
|
155 |
-
},
|
156 |
-
),
|
157 |
-
]
|
158 |
-
|
159 |
-
def _generate_examples(self, filepath):
|
160 |
-
# since examples can contain quotes mid text set quoting to QUOTE_NONE (3) when reading tsv
|
161 |
-
# e.g.: ... and apply specific "tools" to examples and ...
|
162 |
-
data = pd.read_csv(
|
163 |
-
filepath, sep="\t", names=["premise", "hypothesis", "label"], quoting=3
|
164 |
-
)
|
165 |
-
data["id"] = data.index
|
166 |
-
|
167 |
-
if self.config.schema == "source":
|
168 |
-
for _, row in data.iterrows():
|
169 |
-
yield row["id"], row.to_dict()
|
170 |
-
|
171 |
-
elif self.config.schema == "bigbio_te":
|
172 |
-
# normalize labels
|
173 |
-
data["label"] = data["label"].apply(lambda x: LABEL_MAP[x])
|
174 |
-
for _, row in data.iterrows():
|
175 |
-
yield row["id"], row.to_dict()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|