Datasets:

Languages:
English
ArXiv:
License:
masaenger commited on
Commit
2532943
·
verified ·
1 Parent(s): e1b933b

Update sourcedata_nlp based on git version 0af7241

Browse files
Files changed (3) hide show
  1. README.md +42 -0
  2. bigbiohub.py +590 -0
  3. sourcedata_nlp.py +349 -0
README.md ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ bigbio_language:
5
+ - English
6
+ license: "cc-by-4.0"
7
+ bigbio_license_shortname: cc-by-4.0
8
+ multilinguality: monolingual
9
+ pretty_name: SourceData NLP
10
+ homepage: https://sourcedata.embo.org/
11
+ bigbio_pubmed: false
12
+ bigbio_public: true
13
+ bigbio_tasks:
14
+ - NAMED_ENTITY_RECOGNITION
15
+ - NAMED_ENTITY_DISAMBIGUATION
16
+ paperswithcode_id: sourcedata-nlp
17
+ ---
18
+
19
+
20
+ # Dataset Card for SourceData NLP
21
+
22
+ ## Dataset Description
23
+
24
+ - **Homepage:** https://sourcedata.embo.org/
25
+ - **Pubmed:** False
26
+ - **Public:** True
27
+ - **Tasks:** NER,NED
28
+
29
+
30
+ SourceData-NLP is a named entity recognition and entity linking/disambiguation dataset produced through the routine curation of papers during the publication process. All annotations are in figure legends from published papers in molecular and cell biologyThe dataset consists of eight classes of biomedical entities (small molecules, gene products, subcellular components, cell lines, cell types, tissues, organisms, and diseases), their role in the experimental design, and the nature of the experimental method as an additional class. SourceData-NLP contains more than 620,000 annotated biomedical entities, curated from 18,689 figures in 3,223 papers in molecular and cell biology.
31
+
32
+
33
+ ## Citation Information
34
+
35
+ ```
36
+ @article{abreu2023sourcedata,
37
+ title={The SourceData-NLP dataset: integrating curation into scientific publishing for training large language models},
38
+ author={Abreu-Vicente, Jorge and Sonntag, Hannah and Eidens, Thomas and Lemberger, Thomas},
39
+ journal={arXiv preprint arXiv:2310.20440},
40
+ year={2023}
41
+ }
42
+ ```
bigbiohub.py ADDED
@@ -0,0 +1,590 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+ from dataclasses import dataclass
3
+ from enum import Enum
4
+ import logging
5
+ from pathlib import Path
6
+ from types import SimpleNamespace
7
+ from typing import TYPE_CHECKING, Dict, Iterable, List, Tuple
8
+
9
+ import datasets
10
+
11
+ if TYPE_CHECKING:
12
+ import bioc
13
+
14
+ logger = logging.getLogger(__name__)
15
+
16
+
17
+ BigBioValues = SimpleNamespace(NULL="<BB_NULL_STR>")
18
+
19
+
20
+ @dataclass
21
+ class BigBioConfig(datasets.BuilderConfig):
22
+ """BuilderConfig for BigBio."""
23
+
24
+ name: str = None
25
+ version: datasets.Version = None
26
+ description: str = None
27
+ schema: str = None
28
+ subset_id: str = None
29
+
30
+
31
+ class Tasks(Enum):
32
+ NAMED_ENTITY_RECOGNITION = "NER"
33
+ NAMED_ENTITY_DISAMBIGUATION = "NED"
34
+ EVENT_EXTRACTION = "EE"
35
+ RELATION_EXTRACTION = "RE"
36
+ COREFERENCE_RESOLUTION = "COREF"
37
+ QUESTION_ANSWERING = "QA"
38
+ TEXTUAL_ENTAILMENT = "TE"
39
+ SEMANTIC_SIMILARITY = "STS"
40
+ TEXT_PAIRS_CLASSIFICATION = "TXT2CLASS"
41
+ PARAPHRASING = "PARA"
42
+ TRANSLATION = "TRANSL"
43
+ SUMMARIZATION = "SUM"
44
+ TEXT_CLASSIFICATION = "TXTCLASS"
45
+
46
+
47
+ entailment_features = datasets.Features(
48
+ {
49
+ "id": datasets.Value("string"),
50
+ "premise": datasets.Value("string"),
51
+ "hypothesis": datasets.Value("string"),
52
+ "label": datasets.Value("string"),
53
+ }
54
+ )
55
+
56
+ pairs_features = datasets.Features(
57
+ {
58
+ "id": datasets.Value("string"),
59
+ "document_id": datasets.Value("string"),
60
+ "text_1": datasets.Value("string"),
61
+ "text_2": datasets.Value("string"),
62
+ "label": datasets.Value("string"),
63
+ }
64
+ )
65
+
66
+ qa_features = datasets.Features(
67
+ {
68
+ "id": datasets.Value("string"),
69
+ "question_id": datasets.Value("string"),
70
+ "document_id": datasets.Value("string"),
71
+ "question": datasets.Value("string"),
72
+ "type": datasets.Value("string"),
73
+ "choices": [datasets.Value("string")],
74
+ "context": datasets.Value("string"),
75
+ "answer": datasets.Sequence(datasets.Value("string")),
76
+ }
77
+ )
78
+
79
+ text_features = datasets.Features(
80
+ {
81
+ "id": datasets.Value("string"),
82
+ "document_id": datasets.Value("string"),
83
+ "text": datasets.Value("string"),
84
+ "labels": [datasets.Value("string")],
85
+ }
86
+ )
87
+
88
+ text2text_features = datasets.Features(
89
+ {
90
+ "id": datasets.Value("string"),
91
+ "document_id": datasets.Value("string"),
92
+ "text_1": datasets.Value("string"),
93
+ "text_2": datasets.Value("string"),
94
+ "text_1_name": datasets.Value("string"),
95
+ "text_2_name": datasets.Value("string"),
96
+ }
97
+ )
98
+
99
+ kb_features = datasets.Features(
100
+ {
101
+ "id": datasets.Value("string"),
102
+ "document_id": datasets.Value("string"),
103
+ "passages": [
104
+ {
105
+ "id": datasets.Value("string"),
106
+ "type": datasets.Value("string"),
107
+ "text": datasets.Sequence(datasets.Value("string")),
108
+ "offsets": datasets.Sequence([datasets.Value("int32")]),
109
+ }
110
+ ],
111
+ "entities": [
112
+ {
113
+ "id": datasets.Value("string"),
114
+ "type": datasets.Value("string"),
115
+ "text": datasets.Sequence(datasets.Value("string")),
116
+ "offsets": datasets.Sequence([datasets.Value("int32")]),
117
+ "normalized": [
118
+ {
119
+ "db_name": datasets.Value("string"),
120
+ "db_id": datasets.Value("string"),
121
+ }
122
+ ],
123
+ }
124
+ ],
125
+ "events": [
126
+ {
127
+ "id": datasets.Value("string"),
128
+ "type": datasets.Value("string"),
129
+ # refers to the text_bound_annotation of the trigger
130
+ "trigger": {
131
+ "text": datasets.Sequence(datasets.Value("string")),
132
+ "offsets": datasets.Sequence([datasets.Value("int32")]),
133
+ },
134
+ "arguments": [
135
+ {
136
+ "role": datasets.Value("string"),
137
+ "ref_id": datasets.Value("string"),
138
+ }
139
+ ],
140
+ }
141
+ ],
142
+ "coreferences": [
143
+ {
144
+ "id": datasets.Value("string"),
145
+ "entity_ids": datasets.Sequence(datasets.Value("string")),
146
+ }
147
+ ],
148
+ "relations": [
149
+ {
150
+ "id": datasets.Value("string"),
151
+ "type": datasets.Value("string"),
152
+ "arg1_id": datasets.Value("string"),
153
+ "arg2_id": datasets.Value("string"),
154
+ "normalized": [
155
+ {
156
+ "db_name": datasets.Value("string"),
157
+ "db_id": datasets.Value("string"),
158
+ }
159
+ ],
160
+ }
161
+ ],
162
+ }
163
+ )
164
+
165
+
166
+ TASK_TO_SCHEMA = {
167
+ Tasks.NAMED_ENTITY_RECOGNITION.name: "KB",
168
+ Tasks.NAMED_ENTITY_DISAMBIGUATION.name: "KB",
169
+ Tasks.EVENT_EXTRACTION.name: "KB",
170
+ Tasks.RELATION_EXTRACTION.name: "KB",
171
+ Tasks.COREFERENCE_RESOLUTION.name: "KB",
172
+ Tasks.QUESTION_ANSWERING.name: "QA",
173
+ Tasks.TEXTUAL_ENTAILMENT.name: "TE",
174
+ Tasks.SEMANTIC_SIMILARITY.name: "PAIRS",
175
+ Tasks.TEXT_PAIRS_CLASSIFICATION.name: "PAIRS",
176
+ Tasks.PARAPHRASING.name: "T2T",
177
+ Tasks.TRANSLATION.name: "T2T",
178
+ Tasks.SUMMARIZATION.name: "T2T",
179
+ Tasks.TEXT_CLASSIFICATION.name: "TEXT",
180
+ }
181
+
182
+ SCHEMA_TO_TASKS = defaultdict(set)
183
+ for task, schema in TASK_TO_SCHEMA.items():
184
+ SCHEMA_TO_TASKS[schema].add(task)
185
+ SCHEMA_TO_TASKS = dict(SCHEMA_TO_TASKS)
186
+
187
+ VALID_TASKS = set(TASK_TO_SCHEMA.keys())
188
+ VALID_SCHEMAS = set(TASK_TO_SCHEMA.values())
189
+
190
+ SCHEMA_TO_FEATURES = {
191
+ "KB": kb_features,
192
+ "QA": qa_features,
193
+ "TE": entailment_features,
194
+ "T2T": text2text_features,
195
+ "TEXT": text_features,
196
+ "PAIRS": pairs_features,
197
+ }
198
+
199
+
200
+ def get_texts_and_offsets_from_bioc_ann(ann: "bioc.BioCAnnotation") -> Tuple:
201
+
202
+ offsets = [(loc.offset, loc.offset + loc.length) for loc in ann.locations]
203
+
204
+ text = ann.text
205
+
206
+ if len(offsets) > 1:
207
+ i = 0
208
+ texts = []
209
+ for start, end in offsets:
210
+ chunk_len = end - start
211
+ texts.append(text[i : chunk_len + i])
212
+ i += chunk_len
213
+ while i < len(text) and text[i] == " ":
214
+ i += 1
215
+ else:
216
+ texts = [text]
217
+
218
+ return offsets, texts
219
+
220
+
221
+ def remove_prefix(a: str, prefix: str) -> str:
222
+ if a.startswith(prefix):
223
+ a = a[len(prefix) :]
224
+ return a
225
+
226
+
227
+ def parse_brat_file(
228
+ txt_file: Path,
229
+ annotation_file_suffixes: List[str] = None,
230
+ parse_notes: bool = False,
231
+ ) -> Dict:
232
+ """
233
+ Parse a brat file into the schema defined below.
234
+ `txt_file` should be the path to the brat '.txt' file you want to parse, e.g. 'data/1234.txt'
235
+ Assumes that the annotations are contained in one or more of the corresponding '.a1', '.a2' or '.ann' files,
236
+ e.g. 'data/1234.ann' or 'data/1234.a1' and 'data/1234.a2'.
237
+ Will include annotator notes, when `parse_notes == True`.
238
+ brat_features = datasets.Features(
239
+ {
240
+ "id": datasets.Value("string"),
241
+ "document_id": datasets.Value("string"),
242
+ "text": datasets.Value("string"),
243
+ "text_bound_annotations": [ # T line in brat, e.g. type or event trigger
244
+ {
245
+ "offsets": datasets.Sequence([datasets.Value("int32")]),
246
+ "text": datasets.Sequence(datasets.Value("string")),
247
+ "type": datasets.Value("string"),
248
+ "id": datasets.Value("string"),
249
+ }
250
+ ],
251
+ "events": [ # E line in brat
252
+ {
253
+ "trigger": datasets.Value(
254
+ "string"
255
+ ), # refers to the text_bound_annotation of the trigger,
256
+ "id": datasets.Value("string"),
257
+ "type": datasets.Value("string"),
258
+ "arguments": datasets.Sequence(
259
+ {
260
+ "role": datasets.Value("string"),
261
+ "ref_id": datasets.Value("string"),
262
+ }
263
+ ),
264
+ }
265
+ ],
266
+ "relations": [ # R line in brat
267
+ {
268
+ "id": datasets.Value("string"),
269
+ "head": {
270
+ "ref_id": datasets.Value("string"),
271
+ "role": datasets.Value("string"),
272
+ },
273
+ "tail": {
274
+ "ref_id": datasets.Value("string"),
275
+ "role": datasets.Value("string"),
276
+ },
277
+ "type": datasets.Value("string"),
278
+ }
279
+ ],
280
+ "equivalences": [ # Equiv line in brat
281
+ {
282
+ "id": datasets.Value("string"),
283
+ "ref_ids": datasets.Sequence(datasets.Value("string")),
284
+ }
285
+ ],
286
+ "attributes": [ # M or A lines in brat
287
+ {
288
+ "id": datasets.Value("string"),
289
+ "type": datasets.Value("string"),
290
+ "ref_id": datasets.Value("string"),
291
+ "value": datasets.Value("string"),
292
+ }
293
+ ],
294
+ "normalizations": [ # N lines in brat
295
+ {
296
+ "id": datasets.Value("string"),
297
+ "type": datasets.Value("string"),
298
+ "ref_id": datasets.Value("string"),
299
+ "resource_name": datasets.Value(
300
+ "string"
301
+ ), # Name of the resource, e.g. "Wikipedia"
302
+ "cuid": datasets.Value(
303
+ "string"
304
+ ), # ID in the resource, e.g. 534366
305
+ "text": datasets.Value(
306
+ "string"
307
+ ), # Human readable description/name of the entity, e.g. "Barack Obama"
308
+ }
309
+ ],
310
+ ### OPTIONAL: Only included when `parse_notes == True`
311
+ "notes": [ # # lines in brat
312
+ {
313
+ "id": datasets.Value("string"),
314
+ "type": datasets.Value("string"),
315
+ "ref_id": datasets.Value("string"),
316
+ "text": datasets.Value("string"),
317
+ }
318
+ ],
319
+ },
320
+ )
321
+ """
322
+
323
+ example = {}
324
+ example["document_id"] = txt_file.with_suffix("").name
325
+ with txt_file.open() as f:
326
+ example["text"] = f.read()
327
+
328
+ # If no specific suffixes of the to-be-read annotation files are given - take standard suffixes
329
+ # for event extraction
330
+ if annotation_file_suffixes is None:
331
+ annotation_file_suffixes = [".a1", ".a2", ".ann"]
332
+
333
+ if len(annotation_file_suffixes) == 0:
334
+ raise AssertionError(
335
+ "At least one suffix for the to-be-read annotation files should be given!"
336
+ )
337
+
338
+ ann_lines = []
339
+ for suffix in annotation_file_suffixes:
340
+ annotation_file = txt_file.with_suffix(suffix)
341
+ if annotation_file.exists():
342
+ with annotation_file.open() as f:
343
+ ann_lines.extend(f.readlines())
344
+
345
+ example["text_bound_annotations"] = []
346
+ example["events"] = []
347
+ example["relations"] = []
348
+ example["equivalences"] = []
349
+ example["attributes"] = []
350
+ example["normalizations"] = []
351
+
352
+ if parse_notes:
353
+ example["notes"] = []
354
+
355
+ for line in ann_lines:
356
+ line = line.strip()
357
+ if not line:
358
+ continue
359
+
360
+ if line.startswith("T"): # Text bound
361
+ ann = {}
362
+ fields = line.split("\t")
363
+
364
+ ann["id"] = fields[0]
365
+ ann["type"] = fields[1].split()[0]
366
+ ann["offsets"] = []
367
+ span_str = remove_prefix(fields[1], (ann["type"] + " "))
368
+ text = fields[2]
369
+ for span in span_str.split(";"):
370
+ start, end = span.split()
371
+ ann["offsets"].append([int(start), int(end)])
372
+
373
+ # Heuristically split text of discontiguous entities into chunks
374
+ ann["text"] = []
375
+ if len(ann["offsets"]) > 1:
376
+ i = 0
377
+ for start, end in ann["offsets"]:
378
+ chunk_len = end - start
379
+ ann["text"].append(text[i : chunk_len + i])
380
+ i += chunk_len
381
+ while i < len(text) and text[i] == " ":
382
+ i += 1
383
+ else:
384
+ ann["text"] = [text]
385
+
386
+ example["text_bound_annotations"].append(ann)
387
+
388
+ elif line.startswith("E"):
389
+ ann = {}
390
+ fields = line.split("\t")
391
+
392
+ ann["id"] = fields[0]
393
+
394
+ ann["type"], ann["trigger"] = fields[1].split()[0].split(":")
395
+
396
+ ann["arguments"] = []
397
+ for role_ref_id in fields[1].split()[1:]:
398
+ argument = {
399
+ "role": (role_ref_id.split(":"))[0],
400
+ "ref_id": (role_ref_id.split(":"))[1],
401
+ }
402
+ ann["arguments"].append(argument)
403
+
404
+ example["events"].append(ann)
405
+
406
+ elif line.startswith("R"):
407
+ ann = {}
408
+ fields = line.split("\t")
409
+
410
+ ann["id"] = fields[0]
411
+ ann["type"] = fields[1].split()[0]
412
+
413
+ ann["head"] = {
414
+ "role": fields[1].split()[1].split(":")[0],
415
+ "ref_id": fields[1].split()[1].split(":")[1],
416
+ }
417
+ ann["tail"] = {
418
+ "role": fields[1].split()[2].split(":")[0],
419
+ "ref_id": fields[1].split()[2].split(":")[1],
420
+ }
421
+
422
+ example["relations"].append(ann)
423
+
424
+ # '*' seems to be the legacy way to mark equivalences,
425
+ # but I couldn't find any info on the current way
426
+ # this might have to be adapted dependent on the brat version
427
+ # of the annotation
428
+ elif line.startswith("*"):
429
+ ann = {}
430
+ fields = line.split("\t")
431
+
432
+ ann["id"] = fields[0]
433
+ ann["ref_ids"] = fields[1].split()[1:]
434
+
435
+ example["equivalences"].append(ann)
436
+
437
+ elif line.startswith("A") or line.startswith("M"):
438
+ ann = {}
439
+ fields = line.split("\t")
440
+
441
+ ann["id"] = fields[0]
442
+
443
+ info = fields[1].split()
444
+ ann["type"] = info[0]
445
+ ann["ref_id"] = info[1]
446
+
447
+ if len(info) > 2:
448
+ ann["value"] = info[2]
449
+ else:
450
+ ann["value"] = ""
451
+
452
+ example["attributes"].append(ann)
453
+
454
+ elif line.startswith("N"):
455
+ ann = {}
456
+ fields = line.split("\t")
457
+
458
+ ann["id"] = fields[0]
459
+ ann["text"] = fields[2]
460
+
461
+ info = fields[1].split()
462
+
463
+ ann["type"] = info[0]
464
+ ann["ref_id"] = info[1]
465
+ ann["resource_name"] = info[2].split(":")[0]
466
+ ann["cuid"] = info[2].split(":")[1]
467
+ example["normalizations"].append(ann)
468
+
469
+ elif parse_notes and line.startswith("#"):
470
+ ann = {}
471
+ fields = line.split("\t")
472
+
473
+ ann["id"] = fields[0]
474
+ ann["text"] = fields[2] if len(fields) == 3 else BigBioValues.NULL
475
+
476
+ info = fields[1].split()
477
+
478
+ ann["type"] = info[0]
479
+ ann["ref_id"] = info[1]
480
+ example["notes"].append(ann)
481
+
482
+ return example
483
+
484
+
485
+ def brat_parse_to_bigbio_kb(brat_parse: Dict) -> Dict:
486
+ """
487
+ Transform a brat parse (conforming to the standard brat schema) obtained with
488
+ `parse_brat_file` into a dictionary conforming to the `bigbio-kb` schema (as defined in ../schemas/kb.py)
489
+ :param brat_parse:
490
+ """
491
+
492
+ unified_example = {}
493
+
494
+ # Prefix all ids with document id to ensure global uniqueness,
495
+ # because brat ids are only unique within their document
496
+ id_prefix = brat_parse["document_id"] + "_"
497
+
498
+ # identical
499
+ unified_example["document_id"] = brat_parse["document_id"]
500
+ unified_example["passages"] = [
501
+ {
502
+ "id": id_prefix + "_text",
503
+ "type": "abstract",
504
+ "text": [brat_parse["text"]],
505
+ "offsets": [[0, len(brat_parse["text"])]],
506
+ }
507
+ ]
508
+
509
+ # get normalizations
510
+ ref_id_to_normalizations = defaultdict(list)
511
+ for normalization in brat_parse["normalizations"]:
512
+ ref_id_to_normalizations[normalization["ref_id"]].append(
513
+ {
514
+ "db_name": normalization["resource_name"],
515
+ "db_id": normalization["cuid"],
516
+ }
517
+ )
518
+
519
+ # separate entities and event triggers
520
+ unified_example["events"] = []
521
+ non_event_ann = brat_parse["text_bound_annotations"].copy()
522
+ for event in brat_parse["events"]:
523
+ event = event.copy()
524
+ event["id"] = id_prefix + event["id"]
525
+ trigger = next(
526
+ tr
527
+ for tr in brat_parse["text_bound_annotations"]
528
+ if tr["id"] == event["trigger"]
529
+ )
530
+ if trigger in non_event_ann:
531
+ non_event_ann.remove(trigger)
532
+ event["trigger"] = {
533
+ "text": trigger["text"].copy(),
534
+ "offsets": trigger["offsets"].copy(),
535
+ }
536
+ for argument in event["arguments"]:
537
+ argument["ref_id"] = id_prefix + argument["ref_id"]
538
+
539
+ unified_example["events"].append(event)
540
+
541
+ unified_example["entities"] = []
542
+ anno_ids = [ref_id["id"] for ref_id in non_event_ann]
543
+ for ann in non_event_ann:
544
+ entity_ann = ann.copy()
545
+ entity_ann["id"] = id_prefix + entity_ann["id"]
546
+ entity_ann["normalized"] = ref_id_to_normalizations[ann["id"]]
547
+ unified_example["entities"].append(entity_ann)
548
+
549
+ # massage relations
550
+ unified_example["relations"] = []
551
+ skipped_relations = set()
552
+ for ann in brat_parse["relations"]:
553
+ if (
554
+ ann["head"]["ref_id"] not in anno_ids
555
+ or ann["tail"]["ref_id"] not in anno_ids
556
+ ):
557
+ skipped_relations.add(ann["id"])
558
+ continue
559
+ unified_example["relations"].append(
560
+ {
561
+ "arg1_id": id_prefix + ann["head"]["ref_id"],
562
+ "arg2_id": id_prefix + ann["tail"]["ref_id"],
563
+ "id": id_prefix + ann["id"],
564
+ "type": ann["type"],
565
+ "normalized": [],
566
+ }
567
+ )
568
+ if len(skipped_relations) > 0:
569
+ example_id = brat_parse["document_id"]
570
+ logger.info(
571
+ f"Example:{example_id}: The `bigbio_kb` schema allows `relations` only between entities."
572
+ f" Skip (for now): "
573
+ f"{list(skipped_relations)}"
574
+ )
575
+
576
+ # get coreferences
577
+ unified_example["coreferences"] = []
578
+ for i, ann in enumerate(brat_parse["equivalences"], start=1):
579
+ is_entity_cluster = True
580
+ for ref_id in ann["ref_ids"]:
581
+ if not ref_id.startswith("T"): # not textbound -> no entity
582
+ is_entity_cluster = False
583
+ elif ref_id not in anno_ids: # event trigger -> no entity
584
+ is_entity_cluster = False
585
+ if is_entity_cluster:
586
+ entity_ids = [id_prefix + i for i in ann["ref_ids"]]
587
+ unified_example["coreferences"].append(
588
+ {"id": id_prefix + str(i), "entity_ids": entity_ids}
589
+ )
590
+ return unified_example
sourcedata_nlp.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """
17
+ We present the SourceData-NLP dataset produced through the routine curation of papers during the publication process.
18
+ A unique feature of this dataset is its emphasis on the annotation of bioentities in figure legends.
19
+ We annotate eight classes of biomedical entities (small molecules, gene products, subcellular components,
20
+ cell lines, cell types, tissues, organisms, and diseases), their role in the experimental design,
21
+ and the nature of the experimental method as an additional class.
22
+ SourceData-NLP contains more than 620,000 annotated biomedical entities, curated from 18,689 figures in
23
+ 3,223 papers in molecular and cell biology.
24
+
25
+ [bigbio_schema_name] = kb
26
+ """
27
+
28
+ import itertools
29
+ import json
30
+ import os
31
+ from typing import Dict, List, Tuple
32
+
33
+ import datasets
34
+
35
+ from .bigbiohub import BigBioConfig, Tasks, kb_features
36
+
37
+ _LANGUAGES = ["English"]
38
+ _PUBMED = True
39
+ _LOCAL = False
40
+ _DISPLAYNAME = "SourceData-NLP"
41
+
42
+ _CITATION = """\
43
+ @article{abreu2023sourcedata,
44
+ title={The SourceData-NLP dataset: integrating curation into scientific publishing
45
+ for training large language models},
46
+ author={Abreu-Vicente, Jorge and Sonntag, Hannah and Eidens, Thomas and Lemberger, Thomas},
47
+ journal={arXiv preprint arXiv:2310.20440},
48
+ year={2023}
49
+ }
50
+ """
51
+
52
+ _DATASETNAME = "sourcedata_nlp"
53
+
54
+ _DESCRIPTION = """\
55
+ SourceData is an NER/NED dataset of expert annotations of nine
56
+ entity types in figure captions from biomedical research papers.
57
+ """
58
+
59
+ _HOMEPAGE = "https://sourcedata.embo.org/"
60
+
61
+
62
+ _LICENSE = "CC_BY_4p0"
63
+
64
+
65
+ _URLS = {
66
+ _DATASETNAME: (
67
+ "https://huggingface.co/datasets/EMBO/SourceData/resolve/main/bigbio/source_data_json_splits_2.0.2.zip"
68
+ )
69
+ }
70
+
71
+
72
+ _SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_DISAMBIGUATION, Tasks.NAMED_ENTITY_RECOGNITION]
73
+
74
+ _SOURCE_VERSION = "2.0.2"
75
+
76
+ _BIGBIO_VERSION = "1.0.0"
77
+
78
+
79
+ class SourceDataNlpDataset(datasets.GeneratorBasedBuilder):
80
+ """NER + NED dataset of multiple entity types from figure captions of scientific publications"""
81
+
82
+ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
83
+ BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
84
+
85
+ BUILDER_CONFIGS = [
86
+ BigBioConfig(
87
+ name="sourcedata_nlp_source",
88
+ version=SOURCE_VERSION,
89
+ description="sourcedata_nlp source schema",
90
+ schema="source",
91
+ subset_id="sourcedata_nlp",
92
+ ),
93
+ BigBioConfig(
94
+ name="sourcedata_nlp_bigbio_kb",
95
+ version=BIGBIO_VERSION,
96
+ description="sourcedata_nlp BigBio schema",
97
+ schema="bigbio_kb",
98
+ subset_id="sourcedata_nlp",
99
+ ),
100
+ ]
101
+
102
+ DEFAULT_CONFIG_NAME = "sourcedata_nlp_source"
103
+
104
+ def _info(self) -> datasets.DatasetInfo:
105
+ if self.config.schema == "source":
106
+ features = datasets.Features(
107
+ {
108
+ "doi": datasets.Value("string"),
109
+ "abstract": datasets.Value("string"),
110
+ "figures": [
111
+ {
112
+ "fig_id": datasets.Value("string"),
113
+ "label": datasets.Value("string"),
114
+ "fig_graphic_url": datasets.Value("string"),
115
+ "panels": [
116
+ {
117
+ "panel_id": datasets.Value("string"),
118
+ "text": datasets.Value("string"),
119
+ "panel_graphic_url": datasets.Value("string"),
120
+ "entities": [
121
+ {
122
+ "annotation_id": datasets.Value("string"),
123
+ "source": datasets.Value("string"),
124
+ "category": datasets.Value("string"),
125
+ "entity_type": datasets.Value("string"),
126
+ "role": datasets.Value("string"),
127
+ "text": datasets.Value("string"),
128
+ "ext_ids": datasets.Value("string"),
129
+ "norm_text": datasets.Value("string"),
130
+ "ext_dbs": datasets.Value("string"),
131
+ "in_caption": datasets.Value("bool"),
132
+ "ext_names": datasets.Value("string"),
133
+ "ext_tax_ids": datasets.Value("string"),
134
+ "ext_tax_names": datasets.Value("string"),
135
+ "ext_urls": datasets.Value("string"),
136
+ "offsets": [datasets.Value("int64")],
137
+ }
138
+ ],
139
+ }
140
+ ],
141
+ }
142
+ ],
143
+ }
144
+ )
145
+
146
+ elif self.config.schema == "bigbio_kb":
147
+ features = kb_features
148
+
149
+ return datasets.DatasetInfo(
150
+ description=_DESCRIPTION,
151
+ features=features,
152
+ homepage=_HOMEPAGE,
153
+ license=_LICENSE,
154
+ citation=_CITATION,
155
+ )
156
+
157
+ def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
158
+ """Returns SplitGenerators."""
159
+
160
+ urls = _URLS[_DATASETNAME]
161
+ data_dir = dl_manager.download_and_extract(urls)
162
+
163
+ return [
164
+ datasets.SplitGenerator(
165
+ name=datasets.Split.TRAIN,
166
+ gen_kwargs={
167
+ "filepath": os.path.join(data_dir, "train.jsonl"),
168
+ },
169
+ ),
170
+ datasets.SplitGenerator(
171
+ name=datasets.Split.TEST,
172
+ gen_kwargs={
173
+ "filepath": os.path.join(data_dir, "test.jsonl"),
174
+ },
175
+ ),
176
+ datasets.SplitGenerator(
177
+ name=datasets.Split.VALIDATION,
178
+ gen_kwargs={
179
+ "filepath": os.path.join(data_dir, "validation.jsonl"),
180
+ },
181
+ ),
182
+ ]
183
+
184
+ def _generate_examples(self, filepath) -> Tuple[int, Dict]:
185
+ """Yields examples as (key, example) tuples."""
186
+
187
+ if self.config.schema == "source":
188
+ with open(filepath) as fstream:
189
+ for line in fstream:
190
+ document = self._parse_document(line)
191
+ doc_figs = document["figures"]
192
+ all_figures = []
193
+ for fig in doc_figs:
194
+ all_panels = []
195
+ figure = {
196
+ "fig_id": fig["fig_id"],
197
+ "label": fig["label"],
198
+ "fig_graphic_url": fig["fig_graphic_url"],
199
+ }
200
+ for p in fig["panels"]:
201
+ panel = {
202
+ "panel_id": p["panel_id"],
203
+ "text": p["text"].strip(),
204
+ "panel_graphic_url": p["panel_graphic_url"],
205
+ "entities": [
206
+ {
207
+ "annotation_id": t["tag_id"],
208
+ "source": t["source"],
209
+ "category": t["category"],
210
+ "entity_type": t["entity_type"],
211
+ "role": t["role"],
212
+ "text": t["text"],
213
+ "ext_ids": t["ext_ids"],
214
+ "norm_text": t["norm_text"],
215
+ "ext_dbs": t["ext_dbs"],
216
+ "in_caption": bool(t["in_caption"]),
217
+ "ext_names": t["ext_names"],
218
+ "ext_tax_ids": t["ext_tax_ids"],
219
+ "ext_tax_names": t["ext_tax_names"],
220
+ "ext_urls": t["ext_urls"],
221
+ "offsets": t["local_offsets"],
222
+ }
223
+ for t in p["tags"]
224
+ ],
225
+ }
226
+ for e in panel["entities"]:
227
+ assert type(e["offsets"]) == list
228
+ if len(panel["entities"]) == 0:
229
+ continue
230
+ all_panels.append(panel)
231
+
232
+ figure["panels"] = all_panels
233
+
234
+ # Pass on all figures that aren't split into panels
235
+ if len(all_panels) == 0:
236
+ continue
237
+ all_figures.append(figure)
238
+
239
+ output = {
240
+ "doi": document["doi"],
241
+ "abstract": document["abstract"],
242
+ "figures": all_figures,
243
+ }
244
+ yield document["doi"], output
245
+
246
+ elif self.config.schema == "bigbio_kb":
247
+ uid = itertools.count(0)
248
+
249
+ with open(filepath) as fstream:
250
+ for line in fstream:
251
+ output = {}
252
+ document = self._parse_document(line)
253
+
254
+ # Get ids for each document + list of passages
255
+ output["id"] = next(uid)
256
+ output["document_id"] = document["doi"]
257
+ output["passages"] = document["passages"]
258
+ for i, passage in enumerate(output["passages"]):
259
+ passage["id"] = next(uid)
260
+ passage_text = passage["text"].strip()
261
+ passage["text"] = [passage_text]
262
+ passage_offsets = passage["offsets"]
263
+ if i == 0:
264
+ passage_offsets[1] = len(passage_text.strip())
265
+ passage["offsets"] = [
266
+ [
267
+ passage_offsets[0],
268
+ passage_offsets[0] + passage_offsets[1],
269
+ ]
270
+ ]
271
+ entities = []
272
+ for fig in document["figures"]:
273
+ for panel in fig["panels"]:
274
+ for tag in panel["tags"]:
275
+ # Create two separate ents if both role and tag are labeled.
276
+ ent_type = self._get_entity_type(tag)
277
+ if ent_type is not None:
278
+ ent = {
279
+ "id": next(uid),
280
+ "type": ent_type,
281
+ "text": [tag["text"]],
282
+ "offsets": [tag["document_offsets"]],
283
+ "normalized": [
284
+ {"db_name": db_name, "db_id": db_id}
285
+ for db_name, db_id in zip(tag["ext_dbs"], tag["ext_ids"])
286
+ ],
287
+ }
288
+ entities.append(ent)
289
+
290
+ # When entity has a role as well, add an additional entity for this
291
+ # Necessary to create duplicate entity due to constraints of BigBio schema
292
+ # These can be consolidated by matching up document ID + offsets
293
+ role = self._get_entity_role(tag)
294
+ if role is not None:
295
+ role_ent = {
296
+ "id": next(uid),
297
+ "type": role,
298
+ "text": [tag["text"]],
299
+ "offsets": [tag["document_offsets"]],
300
+ "normalized": [
301
+ {"db_name": db_name, "db_id": db_id}
302
+ for db_name, db_id in zip(tag["ext_dbs"], tag["ext_ids"])
303
+ ],
304
+ }
305
+ entities.append(role_ent)
306
+
307
+ output["entities"] = entities
308
+
309
+ output["relations"] = []
310
+ output["events"] = []
311
+ output["coreferences"] = []
312
+
313
+ yield output["document_id"], output
314
+
315
+ def _parse_document(self, raw_document):
316
+ doc = json.loads(raw_document.strip())
317
+ return doc
318
+
319
+ def _get_entity_type(self, tag):
320
+ if tag["entity_type"] == "molecule":
321
+ return "SMALL_MOLECULE"
322
+ elif tag["entity_type"] in ["geneprod", "gene", "protein"]:
323
+ return "GENEPROD"
324
+ elif tag["entity_type"] == "subcellular":
325
+ return "SUBCELLULAR"
326
+ elif tag["entity_type"] == "cell_type":
327
+ return "CELL_TYPE"
328
+ elif tag["entity_type"] == "tissue":
329
+ return "TISSUE"
330
+ elif tag["entity_type"] == "organism":
331
+ return "ORGANISM"
332
+ elif tag["category"] == "assay":
333
+ return "EXP_ASSAY"
334
+ elif tag["category"] == "disease":
335
+ return "DISEASE"
336
+ elif tag["entity_type"] == "cell_line":
337
+ return "CELL_LINE"
338
+
339
+ def _get_entity_role(self, tag):
340
+ if tag["entity_type"] == "molecule":
341
+ if tag["role"] == "intervention":
342
+ return "CONTROLLED_VAR"
343
+ elif tag["role"] == "assayed":
344
+ return "MEASURED_VAR"
345
+ elif tag["entity_type"] in ["geneprod", "gene", "protein"]:
346
+ if tag["role"] == "intervention":
347
+ return "CONTROLLED_VAR"
348
+ elif tag["role"] == "assayed":
349
+ return "MEASURED_VAR"