File size: 6,160 Bytes
774997a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A dataset containing every speech in the House of Commons from May 1979-July 2020.
"""

import os
import pandas as pd

import datasets

_CITATION = """@misc{odell, evan_2021, 
title={Hansard Speeches 1979-2021: Version 3.1.0}, 
DOI={10.5281/zenodo.4843485}, 
abstractNote={<p>Full details are available at <a href="https://evanodell.com/projects/datasets/hansard-data">https://evanodell.com/projects/datasets/hansard-data</a></p> <p><strong>Version 3.1.0 contains the following changes:</strong></p> <p>- Coverage up to the end of April 2021</p>}, 
note={This release is an update of previously released datasets. See full documentation for details.}, 
publisher={Zenodo}, 
author={Odell, Evan}, 
year={2021}, 
month={May} }
"""

_DESCRIPTION = """
A dataset containing every speech in the House of Commons from May 1979-July 2020.
"""

_HOMEPAGE = "https://evanodell.com/projects/datasets/hansard-data/"

_LICENSE = "Creative Commons Attribution 4.0 International License"

_URLS = {
    "csv": "https://zenodo.org/record/4843485/files/hansard-speeches-v310.csv.zip?download=1",
    "json": "https://zenodo.org/record/4843485/files/parliamentary_posts.json?download=1",
}

fields = [
    "id",
    "speech",
    "display_as",
    "party",
    "constituency",
    "mnis_id",
    "date",
    "time",
    "colnum",
    "speech_class",
    "major_heading",
    "minor_heading",
    "oral_heading",
    "year",
    "hansard_membership_id",
    "speakerid",
    "person_id",
    "speakername",
    "url",
    "parliamentary_posts",
    "opposition_posts",
    "government_posts",
]

logger = datasets.utils.logging.get_logger(__name__)


class HansardSpeech(datasets.GeneratorBasedBuilder):
    """A dataset containing every speech in the House of Commons from May 1979-July 2020."""

    VERSION = datasets.Version("3.1.0")

    def _info(self):
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "speech": datasets.Value("string"),
                "display_as": datasets.Value("string"),
                "party": datasets.Value("string"),
                "constituency": datasets.Value("string"),
                "mnis_id": datasets.Value("string"),
                "date": datasets.Value("string"),
                "time": datasets.Value("string"),
                "colnum": datasets.Value("string"),
                "speech_class": datasets.Value("string"),
                "major_heading": datasets.Value("string"),
                "minor_heading": datasets.Value("string"),
                "oral_heading": datasets.Value("string"),
                "year": datasets.Value("string"),
                "hansard_membership_id": datasets.Value("string"),
                "speakerid": datasets.Value("string"),
                "person_id": datasets.Value("string"),
                "speakername": datasets.Value("string"),
                "url": datasets.Value("string"),
                "government_posts": datasets.Sequence(datasets.Value("string")),
                "opposition_posts": datasets.Sequence(datasets.Value("string")),
                "parliamentary_posts": datasets.Sequence(datasets.Value("string")),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        temp_dir = dl_manager.download_and_extract(_URLS["csv"])
        csv_file = os.path.join(temp_dir, "hansard-speeches-v310.csv")
        json_file = dl_manager.download(_URLS["json"])
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepaths": [csv_file, json_file], "split": "train",},
            ),
        ]

    def _generate_examples(self, filepaths, split):
        logger.warn("\nThis is a large dataset. Please be patient")
        json_data = pd.read_json(filepaths[1])
        csv_data_chunks = pd.read_csv(filepaths[0], chunksize=50000)
        for data_chunk in csv_data_chunks:
            for _, row in data_chunk.iterrows():
                data_point = {}
                for field in fields[:-3]:
                    data_point[field] = row[field]
                parl_post = json_data.loc[
                    (json_data["mnis_id"] == data_point["mnis_id"])
                    & (json_data["date"] == data_point["date"])
                ]
                opp_post = []
                gov_post = []
                data_point["government_posts"] = gov_post
                data_point["opposition_posts"] = opp_post
                data_point["parliamentary_posts"] = parl_post
                yield data_point["id"], data_point