File size: 6,375 Bytes
774997a 33ce7c2 774997a 73f08aa 774997a 33ce7c2 774997a 73f08aa 33ce7c2 774997a 33ce7c2 774997a 73f08aa 33ce7c2 73f08aa 33ce7c2 774997a 33ce7c2 774997a 73f08aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A dataset containing every speech in the House of Commons from May 1979-July 2020.
"""
import json
import os
import time
import pandas as pd
from datetime import datetime
import datasets
_CITATION = """@misc{odell, evan_2021,
title={Hansard Speeches 1979-2021: Version 3.1.0},
DOI={10.5281/zenodo.4843485},
abstractNote={<p>Full details are available at <a href="https://evanodell.com/projects/datasets/hansard-data">https://evanodell.com/projects/datasets/hansard-data</a></p> <p><strong>Version 3.1.0 contains the following changes:</strong></p> <p>- Coverage up to the end of April 2021</p>},
note={This release is an update of previously released datasets. See full documentation for details.},
publisher={Zenodo},
author={Odell, Evan},
year={2021},
month={May} }
"""
_DESCRIPTION = """
A dataset containing every speech in the House of Commons from May 1979-July 2020.
"""
_HOMEPAGE = "https://evanodell.com/projects/datasets/hansard-data/"
_LICENSE = "Creative Commons Attribution 4.0 International License"
_URLS = {
"csv": "https://zenodo.org/record/4843485/files/hansard-speeches-v310.csv.zip?download=1",
"json": "https://zenodo.org/record/4843485/files/parliamentary_posts.json?download=1",
}
fields = [
"id",
"speech",
"display_as",
"party",
"constituency",
"mnis_id",
"date",
"time",
"colnum",
"speech_class",
"major_heading",
"minor_heading",
"oral_heading",
"year",
"hansard_membership_id",
"speakerid",
"person_id",
"speakername",
"url",
"parliamentary_posts",
"opposition_posts",
"government_posts",
]
logger = datasets.utils.logging.get_logger(__name__)
class HansardSpeech(datasets.GeneratorBasedBuilder):
"""A dataset containing every speech in the House of Commons from May 1979-July 2020."""
VERSION = datasets.Version("3.1.0")
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"speech": datasets.Value("string"),
"display_as": datasets.Value("string"),
"party": datasets.Value("string"),
"constituency": datasets.Value("string"),
"mnis_id": datasets.Value("string"),
"date": datasets.Value("string"),
"time": datasets.Value("string"),
"colnum": datasets.Value("string"),
"speech_class": datasets.Value("string"),
"major_heading": datasets.Value("string"),
"minor_heading": datasets.Value("string"),
"oral_heading": datasets.Value("string"),
"year": datasets.Value("string"),
"hansard_membership_id": datasets.Value("string"),
"speakerid": datasets.Value("string"),
"person_id": datasets.Value("string"),
"speakername": datasets.Value("string"),
"url": datasets.Value("string"),
"government_posts": datasets.Sequence(datasets.Value("string")),
"opposition_posts": datasets.Sequence(datasets.Value("string")),
"parliamentary_posts": datasets.Sequence(datasets.Value("string")),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
temp_dir = dl_manager.download_and_extract(_URLS["csv"])
csv_file = os.path.join(temp_dir, "hansard-speeches-v310.csv")
json_file = dl_manager.download(_URLS["json"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepaths": [csv_file, json_file], "split": "train",},
),
]
def _generate_examples(self, filepaths, split):
logger.warn("\nThis is a large dataset. Please be patient")
json_data = pd.read_json(filepaths[1])
csv_data_chunks = pd.read_csv(filepaths[0], chunksize=50000, dtype="object")
for data_chunk in csv_data_chunks:
data_chunk.fillna("", inplace=True)
for _, row in data_chunk.iterrows():
data_point = {}
for field in fields[:-3]:
data_point[field] = str(row[field]) if row[field] else ""
parl_post_list = []
if data_point["mnis_id"] and data_point["date"]:
speech_dt = data_point["date"] + " 00:00:00"
try:
parl_posts = json_data[
(json_data["mnis_id"] == int(data_point["mnis_id"]))
& (json_data["date"] == speech_dt)
]["parliamentary_posts"]
if len(parl_posts) > 0:
parl_posts = parl_posts.iloc[0]
for item in parl_posts:
parl_post_list.append(item["parl_post_name"])
except Exception as e:
logger.warn(
f"Data could not be fetched for mnis_id: {data_point['mnis_id']}, date: {data_point['date']}\nError: {repr(e)}"
)
opp_post = []
gov_post = []
data_point["government_posts"] = gov_post
data_point["opposition_posts"] = opp_post
data_point["parliamentary_posts"] = parl_post_list
yield data_point["id"], data_point
|