File size: 6,375 Bytes
774997a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33ce7c2
774997a
73f08aa
774997a
33ce7c2
774997a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73f08aa
33ce7c2
774997a
33ce7c2
774997a
 
 
73f08aa
33ce7c2
 
73f08aa
 
 
 
 
 
 
 
 
 
 
 
 
33ce7c2
774997a
 
 
 
33ce7c2
774997a
73f08aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A dataset containing every speech in the House of Commons from May 1979-July 2020.
"""

import json
import os
import time
import pandas as pd
from datetime import datetime
import datasets

_CITATION = """@misc{odell, evan_2021, 
title={Hansard Speeches 1979-2021: Version 3.1.0}, 
DOI={10.5281/zenodo.4843485}, 
abstractNote={<p>Full details are available at <a href="https://evanodell.com/projects/datasets/hansard-data">https://evanodell.com/projects/datasets/hansard-data</a></p> <p><strong>Version 3.1.0 contains the following changes:</strong></p> <p>- Coverage up to the end of April 2021</p>}, 
note={This release is an update of previously released datasets. See full documentation for details.}, 
publisher={Zenodo}, 
author={Odell, Evan}, 
year={2021}, 
month={May} }
"""

_DESCRIPTION = """
A dataset containing every speech in the House of Commons from May 1979-July 2020.
"""

_HOMEPAGE = "https://evanodell.com/projects/datasets/hansard-data/"

_LICENSE = "Creative Commons Attribution 4.0 International License"

_URLS = {
    "csv": "https://zenodo.org/record/4843485/files/hansard-speeches-v310.csv.zip?download=1",
    "json": "https://zenodo.org/record/4843485/files/parliamentary_posts.json?download=1",
}

fields = [
    "id",
    "speech",
    "display_as",
    "party",
    "constituency",
    "mnis_id",
    "date",
    "time",
    "colnum",
    "speech_class",
    "major_heading",
    "minor_heading",
    "oral_heading",
    "year",
    "hansard_membership_id",
    "speakerid",
    "person_id",
    "speakername",
    "url",
    "parliamentary_posts",
    "opposition_posts",
    "government_posts",
]

logger = datasets.utils.logging.get_logger(__name__)


class HansardSpeech(datasets.GeneratorBasedBuilder):
    """A dataset containing every speech in the House of Commons from May 1979-July 2020."""

    VERSION = datasets.Version("3.1.0")

    def _info(self):
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "speech": datasets.Value("string"),
                "display_as": datasets.Value("string"),
                "party": datasets.Value("string"),
                "constituency": datasets.Value("string"),
                "mnis_id": datasets.Value("string"),
                "date": datasets.Value("string"),
                "time": datasets.Value("string"),
                "colnum": datasets.Value("string"),
                "speech_class": datasets.Value("string"),
                "major_heading": datasets.Value("string"),
                "minor_heading": datasets.Value("string"),
                "oral_heading": datasets.Value("string"),
                "year": datasets.Value("string"),
                "hansard_membership_id": datasets.Value("string"),
                "speakerid": datasets.Value("string"),
                "person_id": datasets.Value("string"),
                "speakername": datasets.Value("string"),
                "url": datasets.Value("string"),
                "government_posts": datasets.Sequence(datasets.Value("string")),
                "opposition_posts": datasets.Sequence(datasets.Value("string")),
                "parliamentary_posts": datasets.Sequence(datasets.Value("string")),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        temp_dir = dl_manager.download_and_extract(_URLS["csv"])
        csv_file = os.path.join(temp_dir, "hansard-speeches-v310.csv")
        json_file = dl_manager.download(_URLS["json"])
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepaths": [csv_file, json_file], "split": "train",},
            ),
        ]

    def _generate_examples(self, filepaths, split):
        logger.warn("\nThis is a large dataset. Please be patient")
        json_data = pd.read_json(filepaths[1])
        csv_data_chunks = pd.read_csv(filepaths[0], chunksize=50000, dtype="object")
        for data_chunk in csv_data_chunks:
            data_chunk.fillna("", inplace=True)
            for _, row in data_chunk.iterrows():
                data_point = {}
                for field in fields[:-3]:
                    data_point[field] = str(row[field]) if row[field] else ""
                parl_post_list = []
                if data_point["mnis_id"] and data_point["date"]:
                    speech_dt = data_point["date"] + " 00:00:00"
                    try:
                        parl_posts = json_data[
                            (json_data["mnis_id"] == int(data_point["mnis_id"]))
                            & (json_data["date"] == speech_dt)
                        ]["parliamentary_posts"]
                        if len(parl_posts) > 0:
                            parl_posts = parl_posts.iloc[0]
                            for item in parl_posts:
                                parl_post_list.append(item["parl_post_name"])
                    except Exception as e:
                        logger.warn(
                            f"Data could not be fetched for mnis_id: {data_point['mnis_id']}, date: {data_point['date']}\nError: {repr(e)}"
                        )
                opp_post = []
                gov_post = []
                data_point["government_posts"] = gov_post
                data_point["opposition_posts"] = opp_post
                data_point["parliamentary_posts"] = parl_post_list
                yield data_point["id"], data_point