# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A dataset containing every speech in the House of Commons from May 1979-July 2020. """ import json import os import pandas as pd from datetime import datetime import datasets _CITATION = """@misc{odell, evan_2021, title={Hansard Speeches 1979-2021: Version 3.1.0}, DOI={10.5281/zenodo.4843485}, abstractNote={
Full details are available at https://evanodell.com/projects/datasets/hansard-data
Version 3.1.0 contains the following changes:
- Coverage up to the end of April 2021
}, note={This release is an update of previously released datasets. See full documentation for details.}, publisher={Zenodo}, author={Odell, Evan}, year={2021}, month={May} } """ _DESCRIPTION = """ A dataset containing every speech in the House of Commons from May 1979-July 2020. """ _HOMEPAGE = "https://evanodell.com/projects/datasets/hansard-data/" _LICENSE = "Creative Commons Attribution 4.0 International License" _URLS = { "csv": "https://zenodo.org/record/4843485/files/hansard-speeches-v310.csv.zip?download=1", "json": "https://zenodo.org/record/4843485/files/parliamentary_posts.json?download=1", } fields = [ "id", "speech", "display_as", "party", "constituency", "mnis_id", "date", "time", "colnum", "speech_class", "major_heading", "minor_heading", "oral_heading", "year", "hansard_membership_id", "speakerid", "person_id", "speakername", "url", "parliamentary_posts", "opposition_posts", "government_posts", ] logger = datasets.utils.logging.get_logger(__name__) class HansardSpeech(datasets.GeneratorBasedBuilder): """A dataset containing every speech in the House of Commons from May 1979-July 2020.""" VERSION = datasets.Version("3.1.0") def _info(self): features = datasets.Features( { "id": datasets.Value("string"), "speech": datasets.Value("string"), "display_as": datasets.Value("string"), "party": datasets.Value("string"), "constituency": datasets.Value("string"), "mnis_id": datasets.Value("string"), "date": datasets.Value("string"), "time": datasets.Value("string"), "colnum": datasets.Value("string"), "speech_class": datasets.Value("string"), "major_heading": datasets.Value("string"), "minor_heading": datasets.Value("string"), "oral_heading": datasets.Value("string"), "year": datasets.Value("string"), "hansard_membership_id": datasets.Value("string"), "speakerid": datasets.Value("string"), "person_id": datasets.Value("string"), "speakername": datasets.Value("string"), "url": datasets.Value("string"), "government_posts": datasets.Sequence(datasets.Value("string")), "opposition_posts": datasets.Sequence(datasets.Value("string")), "parliamentary_posts": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): temp_dir = dl_manager.download_and_extract(_URLS["csv"]) csv_file = os.path.join(temp_dir, "hansard-speeches-v310.csv") json_file = dl_manager.download(_URLS["json"]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={"filepaths": [csv_file, json_file], "split": "train",}, ), ] def _generate_examples(self, filepaths, split): logger.warn("\nThis is a large dataset. Please be patient") json_data = pd.read_json(filepaths[1], dtype="object") csv_data_chunks = pd.read_csv(filepaths[0], chunksize=50000, dtype="object") for data_chunk in csv_data_chunks: data_chunk.fillna("", inplace=True) for _, row in data_chunk.iterrows(): data_point = {} for field in fields[:-3]: data_point[field] = row[field] if row[field] else "" parl_post_list = [] if data_point["mnis_id"] and data_point["date"]: if data_point["time"]: speech_dt = ( data_point["date"] + " " + data_point["time"] + ":00" ) else: speech_dt = data_point["date"] + " 00:00:00" speech_dt_obj = datetime.strptime(speech_dt, "%Y-%m-%d %H:%M:%S") parl_posts = json_data[ (json_data["mnis_id"] == data_point["mnis_id"]) & (json_data["date"] == speech_dt_obj) ]["parliamentary_posts"] if len(parl_posts) > 0: parl_posts = parl_posts.iloc[0] for item in parl_posts: parl_post_list.append(item["parl_post_name"]) opp_post = [] gov_post = [] data_point["government_posts"] = gov_post data_point["opposition_posts"] = opp_post data_point["parliamentary_posts"] = parl_post_list yield data_point["id"], data_point break