# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A dataset containing every speech in the House of Commons from May 1979-July 2020. """ import os import pandas as pd import datasets _CITATION = """@misc{odell, evan_2021, title={Hansard Speeches 1979-2021: Version 3.1.0}, DOI={10.5281/zenodo.4843485}, abstractNote={
Full details are available at https://evanodell.com/projects/datasets/hansard-data
Version 3.1.0 contains the following changes:
- Coverage up to the end of April 2021
}, note={This release is an update of previously released datasets. See full documentation for details.}, publisher={Zenodo}, author={Odell, Evan}, year={2021}, month={May} } """ _DESCRIPTION = """ A dataset containing every speech in the House of Commons from May 1979-July 2020. """ _HOMEPAGE = "https://evanodell.com/projects/datasets/hansard-data/" _LICENSE = "Creative Commons Attribution 4.0 International License" _URLS = { "csv": "https://zenodo.org/record/4843485/files/hansard-speeches-v310.csv.zip?download=1", "json": "https://zenodo.org/record/4843485/files/parliamentary_posts.json?download=1", } fields = [ "id", "speech", "display_as", "party", "constituency", "mnis_id", "date", "time", "colnum", "speech_class", "major_heading", "minor_heading", "oral_heading", "year", "hansard_membership_id", "speakerid", "person_id", "speakername", "url", "parliamentary_posts", "opposition_posts", "government_posts", ] logger = datasets.utils.logging.get_logger(__name__) class HansardSpeech(datasets.GeneratorBasedBuilder): """A dataset containing every speech in the House of Commons from May 1979-July 2020.""" VERSION = datasets.Version("3.1.0") def _info(self): features = datasets.Features( { "id": datasets.Value("string"), "speech": datasets.Value("string"), "display_as": datasets.Value("string"), "party": datasets.Value("string"), "constituency": datasets.Value("string"), "mnis_id": datasets.Value("string"), "date": datasets.Value("string"), "time": datasets.Value("string"), "colnum": datasets.Value("string"), "speech_class": datasets.Value("string"), "major_heading": datasets.Value("string"), "minor_heading": datasets.Value("string"), "oral_heading": datasets.Value("string"), "year": datasets.Value("string"), "hansard_membership_id": datasets.Value("string"), "speakerid": datasets.Value("string"), "person_id": datasets.Value("string"), "speakername": datasets.Value("string"), "url": datasets.Value("string"), "government_posts": datasets.Sequence(datasets.Value("string")), "opposition_posts": datasets.Sequence(datasets.Value("string")), "parliamentary_posts": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive temp_dir = dl_manager.download_and_extract(_URLS["csv"]) csv_file = os.path.join(temp_dir, "hansard-speeches-v310.csv") json_file = dl_manager.download(_URLS["json"]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={"filepaths": [csv_file, json_file], "split": "train",}, ), ] def _generate_examples(self, filepaths, split): logger.warn("\nThis is a large dataset. Please be patient") json_data = pd.read_json(filepaths[1]) csv_data_chunks = pd.read_csv(filepaths[0], chunksize=50000) for data_chunk in csv_data_chunks: for _, row in data_chunk.iterrows(): data_point = {} for field in fields[:-3]: data_point[field] = row[field] parl_post = json_data.loc[ (json_data["mnis_id"] == data_point["mnis_id"]) & (json_data["date"] == data_point["date"]) ] opp_post = [] gov_post = [] data_point["government_posts"] = gov_post data_point["opposition_posts"] = opp_post data_point["parliamentary_posts"] = parl_post yield data_point["id"], data_point