# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dataset of illustrated and non illustrated 19th Century newspaper ads.""" import ast import os import pandas as pd import datasets from PIL import Image _CITATION = """\ @dataset{van_strien_daniel_2021_5838410, author = {van Strien, Daniel}, title = {{19th Century United States Newspaper Advert images with 'illustrated' or 'non illustrated' labels}}, month = oct, year = 2021, publisher = {Zenodo}, version = {0.0.1}, doi = {10.5281/zenodo.5838410}, url = {https://doi.org/10.5281/zenodo.5838410}} """ _DESCRIPTION = """\ The Dataset contains images derived from the Newspaper Navigator (news-navigator.labs.loc.gov/), a dataset of images drawn from the Library of Congress Chronicling America collection. """ _HOMEPAGE = "https://doi.org/10.5281/zenodo.5838410" _LICENSE = "Public Domain" _URLS = "https://zenodo.org/record/5838410/files/images.zip?download=1" _DTYPES = { "page_seq_num": "int64", "edition_seq_num": "int64", "batch": "string", "lccn": "string", "score": "float64", "place_of_publication": "string", "name": "string", "publisher": "string", "url": "string", "page_url": "string", } class IllustratedAds(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.1.0") def _info(self): features = datasets.Features( { "file": datasets.Value("string"), "image": datasets.Image(), "label": datasets.ClassLabel(names=["text-only", "illustrations"]), "pub_date": datasets.Value("timestamp[ns]"), "page_seq_num": datasets.Value("int64"), "edition_seq_num": datasets.Value("int64"), "batch": datasets.Value("string"), "lccn": datasets.Value("string"), "box": datasets.Sequence(datasets.Value("float32")), "score": datasets.Value("float64"), "ocr": datasets.Value("string"), "place_of_publication": datasets.Value("string"), "geographic_coverage": datasets.Value("string"), "name": datasets.Value("string"), "publisher": datasets.Value("string"), "url": datasets.Value("string"), "page_url": datasets.Value("string"), } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): images = dl_manager.download_and_extract(_URLS) annotations = dl_manager.download( [ "https://zenodo.org/record/5838410/files/ads.csv?download=1", "https://zenodo.org/record/5838410/files/sample.csv?download=1" ] ) df_labels = pd.read_csv( annotations[0], index_col=0 ) df_metadata = pd.read_csv( annotations[1], index_col=0, dtype=_DTYPES, ) df_metadata["file"] = df_metadata.filepath.str.replace("/", "_") df_metadata = df_metadata.set_index("file", drop=True) df = df_labels.join(df_metadata) df = df.reset_index() annotations = df.to_dict(orient="records") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": images, "annotations": annotations, }, ), ] def _generate_examples(self, images, annotations): for id_, row in enumerate(annotations): box = ast.literal_eval(row["box"]) row["box"] = box row.pop("filepath") ocr = " ".join(ast.literal_eval(row["ocr"])) row["ocr"] = ocr image = row["file"] row["image"] = os.path.join(images, image) yield id_, row