Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Dutch
ArXiv:
Tags:
lam
Libraries:
Datasets
pandas
License:
unsilence_voc / unsilence_voc.py
davanstrien's picture
davanstrien HF staff
draft loading script
ace4c13
raw
history blame
6.79 kB
# coding=utf-8
# Copyright 2022 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""UnSilenceVOC dataset"""
import datasets
import re
from datasets import ClassLabel, Sequence, Value
_CITATION = """\
TODO
"""
_DESCRIPTION = """\
TODO
"""
NE_MAIN_LABELS = [
"B-Organization",
"B-Organization,B-Place",
"B-Organization,I-Person",
"B-Organization,I-Place",
"B-Person",
"B-Person,B-Place",
"B-Person,I-Place",
"B-Place",
"I-Organization",
"I-Organization,B-Place",
"I-Organization,I-Person",
"I-Organization,I-Person,B-Place",
"I-Organization,I-Person,I-Place",
"I-Organization,I-Place",
"I-Person",
"I-Person,B-Place",
"I-Person,I-Place",
"I-Place",
"O",
]
NE_PER_NAME = ["I-ProperName", "O", "B-ProperName", ""]
NE_PER_GENDER = [
"B-Group",
"B-Man",
"B-Man,B-Unspecified",
"B-Man,I-Woman",
"B-Unspecified",
"B-Unspecified,I-Woman",
"B-Woman",
"I-Group",
"I-Man",
"I-Man,I-Unspecified",
"I-Man,I-Woman",
"I-Unspecified",
"I-Unspecified,I-Woman",
"I-Woman",
"NE-PER-GENDER",
"O",
]
NE_PER_LEGAL_STATUS = [
"B-Enslaved",
"B-Freed",
"B-Unspecified",
"I-Enslaved",
"I-Freed",
"I-Unspecified",
"NE-PER-LEGAL-STATUS",
"O",
]
NE_PER_ROLE = [
"B-Acting_Notary",
"B-Beneficiary",
"B-Notary",
"B-Other",
"B-Testator",
"B-Testator_Beneficiary",
"B-Witness",
"I-Acting_Notary",
"I-Beneficiary",
"I-Beneficiary,B-Other",
"I-Beneficiary,I-Other",
"I-Notary",
"I-Other",
"I-Testator",
"I-Testator_Beneficiary",
"I-Witness",
"NE-PER-ROLE",
"O",
]
NE_ORG_BENEFICIARY = [
"B-No",
"B-Yes",
"I-No",
"I-Yes",
"NE-ORG-BENEFICIARY",
"O",
]
_BASE_URL = (
"https://raw.githubusercontent.com/budh333/UnSilence_VOC/main/processed_data"
)
_URLS = {
"train": f"{_BASE_URL}/train-nl.tsv",
"test": f"{_BASE_URL}/test-nl.tsv",
"dev": f"{_BASE_URL}/dev-nl.tsv",
}
class UnSilenceVOC(datasets.GeneratorBasedBuilder):
"""UnSilence VOC dataset."""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"tokens": Sequence(datasets.Value("string")),
"NE-MAIN": Sequence(
ClassLabel(names=NE_MAIN_LABELS),
),
"NE-PER-NAME": Sequence(ClassLabel(names=NE_PER_NAME)),
"NE-PER-GENDER": Sequence(ClassLabel(names=NE_PER_GENDER)),
"NE-PER-LEGAL-STATUS": Sequence(
ClassLabel(names=NE_PER_LEGAL_STATUS)
),
"NE-PER-ROLE": Sequence(ClassLabel(names=NE_PER_ROLE)),
"NE-ORG-BENEFICIARY": Sequence(
ClassLabel(names=NE_ORG_BENEFICIARY)
),
"MISC": Value("string"),
"document_id": datasets.Value("string"),
}
),
homepage="TODO",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": downloaded_files["train"]},
)
]
def _generate_examples(self, filepath):
document_id_re = re.compile(r"# document_path = ..(\/.*.txt)")
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
NE_MAIN_LABELS = []
NE_PER_NAME = []
NE_PER_GENDER = []
NE_PER_LEGAL_STATUS = []
NE_PER_ROLE = []
NE_ORG_BENEFICIARY = []
MISC = []
for line in f:
if line.startswith("TOKEN"):
continue
if line.startswith("#") or line.startswith("\t"):
document_id_match = re.search(document_id_re, line)
if document_id_match:
document_id = document_id_match.groups(0)[0]
if not tokens:
continue
yield guid, {
"tokens": tokens,
"NE-MAIN": NE_MAIN_LABELS,
"NE-PER-NAME": NE_PER_NAME,
"NE-PER-GENDER": NE_PER_GENDER,
"NE-PER-LEGAL-STATUS": NE_PER_LEGAL_STATUS,
"NE-PER-ROLE": NE_PER_ROLE,
"NE-ORG-BENEFICIARY": NE_ORG_BENEFICIARY,
"MISC": MISC,
"document_id": document_id,
}
guid += 1
tokens = []
NE_MAIN_LABELS = []
NE_PER_NAME = []
NE_PER_GENDER = []
NE_PER_LEGAL_STATUS = []
NE_PER_ROLE = []
NE_ORG_BENEFICIARY = []
MISC = []
else:
# tokens are tab separated
splits = line.split("\t")
tokens.append(splits[0])
NE_MAIN_LABELS.append(splits[1])
NE_PER_NAME.append(splits[2])
NE_PER_GENDER.append(splits[3])
NE_PER_LEGAL_STATUS.append(splits[4])
NE_PER_ROLE.append(splits[5])
NE_ORG_BENEFICIARY.append(splits[6])
MISC.append(splits[-1].replace("\n", ""))
# last example
yield guid, {
"tokens": tokens,
"NE-MAIN": NE_MAIN_LABELS,
"NE-PER-NAME": NE_PER_NAME,
"NE-PER-GENDER": NE_PER_GENDER,
"NE-PER-LEGAL-STATUS": NE_PER_LEGAL_STATUS,
"NE-PER-ROLE": NE_PER_ROLE,
"NE-ORG-BENEFICIARY": NE_ORG_BENEFICIARY,
"MISC": MISC,
"document_id": "document_id",
}