Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
Dutch
Size:
1K - 10K
ArXiv:
Tags:
lam
License:
# coding=utf-8 | |
# Copyright 2022 HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""UnSilenceVOC dataset""" | |
import datasets | |
import re | |
from datasets import ClassLabel, Sequence, Value | |
_CITATION = """\ | |
TODO | |
""" | |
_DESCRIPTION = """\ | |
TODO | |
""" | |
NE_MAIN_LABELS = [ | |
"B-Organization", | |
"B-Organization,B-Place", | |
"B-Organization,I-Person", | |
"B-Organization,I-Place", | |
"B-Person", | |
"B-Person,B-Place", | |
"B-Person,I-Place", | |
"B-Place", | |
"I-Organization", | |
"I-Organization,B-Place", | |
"I-Organization,I-Person", | |
"I-Organization,I-Person,B-Place", | |
"I-Organization,I-Person,I-Place", | |
"I-Organization,I-Place", | |
"I-Person", | |
"I-Person,B-Place", | |
"I-Person,I-Place", | |
"I-Place", | |
"O", | |
] | |
NE_PER_NAME = ["I-ProperName", "O", "B-ProperName", ""] | |
NE_PER_GENDER = [ | |
"B-Group", | |
"B-Man", | |
"B-Man,B-Unspecified", | |
"B-Man,I-Woman", | |
"B-Unspecified", | |
"B-Unspecified,I-Woman", | |
"B-Woman", | |
"I-Group", | |
"I-Man", | |
"I-Man,I-Unspecified", | |
"I-Man,I-Woman", | |
"I-Unspecified", | |
"I-Unspecified,I-Woman", | |
"I-Woman", | |
"NE-PER-GENDER", | |
"O", | |
] | |
NE_PER_LEGAL_STATUS = [ | |
"B-Enslaved", | |
"B-Freed", | |
"B-Unspecified", | |
"I-Enslaved", | |
"I-Freed", | |
"I-Unspecified", | |
"NE-PER-LEGAL-STATUS", | |
"O", | |
] | |
NE_PER_ROLE = [ | |
"B-Acting_Notary", | |
"B-Beneficiary", | |
"B-Notary", | |
"B-Other", | |
"B-Testator", | |
"B-Testator_Beneficiary", | |
"B-Witness", | |
"I-Acting_Notary", | |
"I-Beneficiary", | |
"I-Beneficiary,B-Other", | |
"I-Beneficiary,I-Other", | |
"I-Notary", | |
"I-Other", | |
"I-Testator", | |
"I-Testator_Beneficiary", | |
"I-Witness", | |
"NE-PER-ROLE", | |
"O", | |
] | |
NE_ORG_BENEFICIARY = [ | |
"B-No", | |
"B-Yes", | |
"I-No", | |
"I-Yes", | |
"NE-ORG-BENEFICIARY", | |
"O", | |
] | |
_BASE_URL = ( | |
"https://raw.githubusercontent.com/budh333/UnSilence_VOC/main/processed_data" | |
) | |
_URLS = { | |
"train": f"{_BASE_URL}/train-nl.tsv", | |
"test": f"{_BASE_URL}/test-nl.tsv", | |
"dev": f"{_BASE_URL}/dev-nl.tsv", | |
} | |
class UnSilenceVOC(datasets.GeneratorBasedBuilder): | |
"""UnSilence VOC dataset.""" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"tokens": Sequence(datasets.Value("string")), | |
"NE-MAIN": Sequence( | |
ClassLabel(names=NE_MAIN_LABELS), | |
), | |
"NE-PER-NAME": Sequence(ClassLabel(names=NE_PER_NAME)), | |
"NE-PER-GENDER": Sequence(ClassLabel(names=NE_PER_GENDER)), | |
"NE-PER-LEGAL-STATUS": Sequence( | |
ClassLabel(names=NE_PER_LEGAL_STATUS) | |
), | |
"NE-PER-ROLE": Sequence(ClassLabel(names=NE_PER_ROLE)), | |
"NE-ORG-BENEFICIARY": Sequence( | |
ClassLabel(names=NE_ORG_BENEFICIARY) | |
), | |
"MISC": Value("string"), | |
"document_id": datasets.Value("string"), | |
} | |
), | |
homepage="TODO", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
downloaded_files = dl_manager.download_and_extract(_URLS) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": downloaded_files["train"]}, | |
) | |
] | |
def _generate_examples(self, filepath): | |
document_id_re = re.compile(r"# document_path = ..(\/.*.txt)") | |
with open(filepath, encoding="utf-8") as f: | |
guid = 0 | |
tokens = [] | |
NE_MAIN_LABELS = [] | |
NE_PER_NAME = [] | |
NE_PER_GENDER = [] | |
NE_PER_LEGAL_STATUS = [] | |
NE_PER_ROLE = [] | |
NE_ORG_BENEFICIARY = [] | |
MISC = [] | |
for line in f: | |
if line.startswith("TOKEN"): | |
continue | |
if line.startswith("#") or line.startswith("\t"): | |
document_id_match = re.search(document_id_re, line) | |
if document_id_match: | |
document_id = document_id_match.groups(0)[0] | |
if not tokens: | |
continue | |
yield guid, { | |
"tokens": tokens, | |
"NE-MAIN": NE_MAIN_LABELS, | |
"NE-PER-NAME": NE_PER_NAME, | |
"NE-PER-GENDER": NE_PER_GENDER, | |
"NE-PER-LEGAL-STATUS": NE_PER_LEGAL_STATUS, | |
"NE-PER-ROLE": NE_PER_ROLE, | |
"NE-ORG-BENEFICIARY": NE_ORG_BENEFICIARY, | |
"MISC": MISC, | |
"document_id": document_id, | |
} | |
guid += 1 | |
tokens = [] | |
NE_MAIN_LABELS = [] | |
NE_PER_NAME = [] | |
NE_PER_GENDER = [] | |
NE_PER_LEGAL_STATUS = [] | |
NE_PER_ROLE = [] | |
NE_ORG_BENEFICIARY = [] | |
MISC = [] | |
else: | |
# tokens are tab separated | |
splits = line.split("\t") | |
tokens.append(splits[0]) | |
NE_MAIN_LABELS.append(splits[1]) | |
NE_PER_NAME.append(splits[2]) | |
NE_PER_GENDER.append(splits[3]) | |
NE_PER_LEGAL_STATUS.append(splits[4]) | |
NE_PER_ROLE.append(splits[5]) | |
NE_ORG_BENEFICIARY.append(splits[6]) | |
MISC.append(splits[-1].replace("\n", "")) | |
# last example | |
yield guid, { | |
"tokens": tokens, | |
"NE-MAIN": NE_MAIN_LABELS, | |
"NE-PER-NAME": NE_PER_NAME, | |
"NE-PER-GENDER": NE_PER_GENDER, | |
"NE-PER-LEGAL-STATUS": NE_PER_LEGAL_STATUS, | |
"NE-PER-ROLE": NE_PER_ROLE, | |
"NE-ORG-BENEFICIARY": NE_ORG_BENEFICIARY, | |
"MISC": MISC, | |
"document_id": "document_id", | |
} | |