File size: 3,858 Bytes
126d222 bd25e98 126d222 f4e9617 126d222 bd25e98 126d222 bd25e98 126d222 bd25e98 126d222 bd25e98 126d222 bd25e98 126d222 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""The Language Model 1 Billion dataset."""
import os
from fnmatch import fnmatch
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@article{DBLP:journals/corr/ChelbaMSGBK13,
author = {Ciprian Chelba and
Tomas Mikolov and
Mike Schuster and
Qi Ge and
Thorsten Brants and
Phillipp Koehn},
title = {One Billion Word Benchmark for Measuring Progress in Statistical Language
Modeling},
journal = {CoRR},
volume = {abs/1312.3005},
year = {2013},
url = {http://arxiv.org/abs/1312.3005},
archivePrefix = {arXiv},
eprint = {1312.3005},
timestamp = {Mon, 13 Aug 2018 16:46:16 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/ChelbaMSGBK13},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
"""
_DESCRIPTION = """\
A benchmark corpus to be used for measuring progress in statistical language \
modeling. This has almost one billion words in the training data.
"""
_DOWNLOAD_URL = "http://www.statmt.org/lm-benchmark/" "1-billion-word-language-modeling-benchmark-r13output.tar.gz"
_TOP_LEVEL_DIR = "1-billion-word-language-modeling-benchmark-r13output"
_TRAIN_FILE_FORMAT = "/".join([_TOP_LEVEL_DIR, "training-monolingual.tokenized.shuffled", "news.en-*"])
_HELDOUT_FILE_FORMAT = "/".join([_TOP_LEVEL_DIR, "heldout-monolingual.tokenized.shuffled", "news.en.heldout-*"])
class Lm1bConfig(datasets.BuilderConfig):
"""BuilderConfig for Lm1b."""
def __init__(self, **kwargs):
"""BuilderConfig for Lm1b.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(Lm1bConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
class Lm1b(datasets.GeneratorBasedBuilder):
"""1 Billion Word Language Model Benchmark dataset."""
BUILDER_CONFIGS = [
Lm1bConfig(
name="plain_text",
description="Plain text",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({"text": datasets.Value("string")}),
supervised_keys=("text", "text"),
homepage="http://www.statmt.org/lm-benchmark/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
archive = dl_manager.download(_DOWNLOAD_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"files": dl_manager.iter_archive(archive), "pattern": _TRAIN_FILE_FORMAT},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"files": dl_manager.iter_archive(archive), "pattern": _HELDOUT_FILE_FORMAT},
),
]
def _generate_examples(self, files, pattern):
for path, f in files:
if fnmatch(path, pattern):
for idx, line in enumerate(f):
yield "%s_%d" % (os.path.basename(path), idx), {
"text": line.decode("utf-8").strip(),
}
|