lovodkin93
commited on
Commit
•
0ac4ef8
1
Parent(s):
731e223
updated the script
Browse files- Controlled-Text-Reduction-dataset.py +328 -157
Controlled-Text-Reduction-dataset.py
CHANGED
@@ -1,3 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# coding=utf-8
|
2 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
#
|
@@ -12,131 +251,74 @@
|
|
12 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
-
"""A Dataset loading script for the
|
16 |
|
17 |
|
18 |
import datasets
|
19 |
-
from dataclasses import dataclass
|
20 |
from pathlib import Path
|
21 |
-
from typing import List
|
22 |
import pandas as pd
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
34 |
-
# pages={7008--7013},
|
35 |
-
# year={2020}
|
36 |
-
# }
|
37 |
-
# """
|
38 |
|
39 |
|
40 |
_DESCRIPTION = """\
|
41 |
-
The dataset contains
|
42 |
-
|
43 |
-
|
|
|
44 |
"""
|
45 |
|
46 |
-
_HOMEPAGE = "https://github.com/
|
47 |
-
|
48 |
-
_LICENSE = """MIT License
|
49 |
-
Copyright (c) 2022 lovodkin93
|
50 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
51 |
-
of this software and associated documentation files (the "Software"), to deal
|
52 |
-
in the Software without restriction, including without limitation the rights
|
53 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
54 |
-
copies of the Software, and to permit persons to whom the Software is
|
55 |
-
furnished to do so, subject to the following conditions:
|
56 |
-
The above copyright notice and this permission notice shall be included in all
|
57 |
-
copies or substantial portions of the Software.
|
58 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
59 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
60 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
61 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
62 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
63 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
64 |
-
SOFTWARE."""
|
65 |
|
|
|
66 |
|
67 |
-
# _URLs = {
|
68 |
-
# "csv": {
|
69 |
-
# "sentences": {
|
70 |
-
# "wikinews.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikinews.dev.full.csv",
|
71 |
-
# "wikinews.test": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikinews.test.full.csv",
|
72 |
-
# "wikipedia.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikipedia.dev.full.csv",
|
73 |
-
# "wikipedia.test": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikipedia.test.full.csv",
|
74 |
-
# },
|
75 |
-
# "qasrl-annotations": {
|
76 |
-
# "wikinews.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikinews.dev.gold.csv",
|
77 |
-
# "wikinews.test": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikinews.test.gold.csv",
|
78 |
-
# "wikipedia.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikipedia.dev.gold.csv",
|
79 |
-
# "wikipedia.test": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikipedia.test.gold.csv",
|
80 |
-
# },
|
81 |
-
# },
|
82 |
-
# "jsonl": "https://qasrl.org/data/qasrl-gs.tar"
|
83 |
-
# }
|
84 |
|
85 |
_URLs = {
|
86 |
-
"
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
"
|
92 |
-
"train": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/train_CNNDM.csv",
|
93 |
-
"dev": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/dev_DUC-2001-2002.csv",
|
94 |
-
"test": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/test_DUC-2001-2002.csv",
|
95 |
-
},
|
96 |
}
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
""" Allow the loader to re-distribute the original dev and test splits between train, dev and test. """
|
102 |
-
data_source: str = "DUC-2001-2002" # "DUC-2001-2002" or "CNN-DM"
|
103 |
-
|
104 |
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
|
110 |
-
|
111 |
-
VERSION = datasets.Version("1.0.0")
|
112 |
-
|
113 |
-
BUILDER_CONFIG_CLASS = ControlledTextReductionConfig
|
114 |
|
115 |
BUILDER_CONFIGS = [
|
116 |
-
|
117 |
-
name="
|
118 |
-
version=VERSION,
|
119 |
-
description="This provides the Controlled Text Reduction dataset extracted from the DUC 2001-2002 Single Document Summarization benchmark",
|
120 |
-
data_source="DUC-2001-2002"
|
121 |
),
|
122 |
-
ControlledTextReductionConfig(
|
123 |
-
name="CNN-DM",
|
124 |
-
version=VERSION,
|
125 |
-
description="This provides the Controlled Text Reduction dataset extracted from the CNN-DM dataset (the train split)",
|
126 |
-
data_source="CNN-DM"
|
127 |
-
)
|
128 |
]
|
129 |
|
130 |
DEFAULT_CONFIG_NAME = (
|
131 |
-
"
|
132 |
)
|
133 |
|
134 |
def _info(self):
|
135 |
features = datasets.Features(
|
136 |
{
|
137 |
-
"
|
138 |
-
"
|
139 |
-
"
|
|
|
140 |
}
|
141 |
)
|
142 |
return datasets.DatasetInfo(
|
@@ -159,69 +341,58 @@ class ControlledTextReduction(datasets.GeneratorBasedBuilder):
|
|
159 |
def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager):
|
160 |
"""Returns SplitGenerators."""
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
datasets.
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
else:
|
193 |
-
return [
|
194 |
-
datasets.SplitGenerator(
|
195 |
-
name=datasets.Split.TRAIN,
|
196 |
-
# These kwargs will be passed to _generate_examples
|
197 |
-
gen_kwargs={
|
198 |
-
"filepath": corpora["train"]
|
199 |
-
},
|
200 |
-
),
|
201 |
-
datasets.SplitGenerator(
|
202 |
-
name=datasets.Split.VALIDATION,
|
203 |
-
# These kwargs will be passed to _generate_examples
|
204 |
-
gen_kwargs={
|
205 |
-
"filepath": corpora["dev"]
|
206 |
-
},
|
207 |
-
),
|
208 |
-
datasets.SplitGenerator(
|
209 |
-
name=datasets.Split.TEST,
|
210 |
-
# These kwargs will be passed to _generate_examples
|
211 |
-
gen_kwargs={
|
212 |
-
"filepath": corpora["test"]
|
213 |
-
},
|
214 |
-
),
|
215 |
-
]
|
216 |
|
217 |
-
def _generate_examples(self,
|
218 |
|
219 |
-
"""
|
|
|
|
|
|
|
220 |
|
221 |
# merge annotations from sections
|
222 |
-
df = pd.read_csv(
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# # coding=utf-8
|
2 |
+
# # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
# #
|
4 |
+
# # Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# # you may not use this file except in compliance with the License.
|
6 |
+
# # You may obtain a copy of the License at
|
7 |
+
# #
|
8 |
+
# # http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
# #
|
10 |
+
# # Unless required by applicable law or agreed to in writing, software
|
11 |
+
# # distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# # See the License for the specific language governing permissions and
|
14 |
+
# # limitations under the License.
|
15 |
+
# """A Dataset loading script for the Controlled Text Reduction dataset."""
|
16 |
+
|
17 |
+
|
18 |
+
# import datasets
|
19 |
+
# from dataclasses import dataclass
|
20 |
+
# from pathlib import Path
|
21 |
+
# from typing import List, Tuple
|
22 |
+
# import pandas as pd
|
23 |
+
# import json
|
24 |
+
# import gzip
|
25 |
+
# import itertools
|
26 |
+
|
27 |
+
|
28 |
+
# _CITATION = """"""
|
29 |
+
# # _CITATION = """\
|
30 |
+
# # @inproceedings{roit2020controlled,
|
31 |
+
# # title={Controlled Crowdsourcing for High-Quality QA-SRL Annotation},
|
32 |
+
# # author={Roit, Paul and Klein, Ayal and Stepanov, Daniela and Mamou, Jonathan and Michael, Julian and Stanovsky, Gabriel and Zettlemoyer, Luke and Dagan, Ido},
|
33 |
+
# # booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
34 |
+
# # pages={7008--7013},
|
35 |
+
# # year={2020}
|
36 |
+
# # }
|
37 |
+
# # """
|
38 |
+
|
39 |
+
|
40 |
+
# _DESCRIPTION = """\
|
41 |
+
# The dataset contains document-summary pairs with document spans (referred to as "highlights"), indicating the "pre-selected" spans that lead to the creation of the summary.
|
42 |
+
# The evaluation and test datasets were constructed via controlled crowdsourcing.
|
43 |
+
# The train datasets were automatically generated using the summary-source proposition-level alignment model SuperPAL (Ernst et al., 2021).
|
44 |
+
# """
|
45 |
+
|
46 |
+
# _HOMEPAGE = "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main"
|
47 |
+
|
48 |
+
# _LICENSE = """MIT License
|
49 |
+
# Copyright (c) 2022 lovodkin93
|
50 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
51 |
+
# of this software and associated documentation files (the "Software"), to deal
|
52 |
+
# in the Software without restriction, including without limitation the rights
|
53 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
54 |
+
# copies of the Software, and to permit persons to whom the Software is
|
55 |
+
# furnished to do so, subject to the following conditions:
|
56 |
+
# The above copyright notice and this permission notice shall be included in all
|
57 |
+
# copies or substantial portions of the Software.
|
58 |
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
59 |
+
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
60 |
+
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
61 |
+
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
62 |
+
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
63 |
+
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
64 |
+
# SOFTWARE."""
|
65 |
+
|
66 |
+
|
67 |
+
# # _URLs = {
|
68 |
+
# # "csv": {
|
69 |
+
# # "sentences": {
|
70 |
+
# # "wikinews.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikinews.dev.full.csv",
|
71 |
+
# # "wikinews.test": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikinews.test.full.csv",
|
72 |
+
# # "wikipedia.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikipedia.dev.full.csv",
|
73 |
+
# # "wikipedia.test": "https://github.com/plroit/qasrl-gs/raw/master/data/sentences/wikipedia.test.full.csv",
|
74 |
+
# # },
|
75 |
+
# # "qasrl-annotations": {
|
76 |
+
# # "wikinews.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikinews.dev.gold.csv",
|
77 |
+
# # "wikinews.test": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikinews.test.gold.csv",
|
78 |
+
# # "wikipedia.dev": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikipedia.dev.gold.csv",
|
79 |
+
# # "wikipedia.test": "https://github.com/plroit/qasrl-gs/raw/master/data/gold/wikipedia.test.gold.csv",
|
80 |
+
# # },
|
81 |
+
# # },
|
82 |
+
# # "jsonl": "https://qasrl.org/data/qasrl-gs.tar"
|
83 |
+
# # }
|
84 |
+
|
85 |
+
# _URLs = {
|
86 |
+
# "DUC-2001-2002": {
|
87 |
+
# "dev": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/dev_DUC-2001-2002.csv",
|
88 |
+
# "test": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/test_DUC-2001-2002.csv",
|
89 |
+
# "train": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/train_DUC-2001-2002.csv"
|
90 |
+
# },
|
91 |
+
# "CNN-DM": {
|
92 |
+
# "train": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/train_CNNDM.csv",
|
93 |
+
# "dev": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/dev_DUC-2001-2002.csv",
|
94 |
+
# "test": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/test_DUC-2001-2002.csv",
|
95 |
+
# },
|
96 |
+
# }
|
97 |
+
|
98 |
+
|
99 |
+
# @dataclass
|
100 |
+
# class ControlledTextReductionConfig(datasets.BuilderConfig):
|
101 |
+
# """ Allow the loader to re-distribute the original dev and test splits between train, dev and test. """
|
102 |
+
# data_source: str = "DUC-2001-2002" # "DUC-2001-2002" or "CNN-DM"
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
# class ControlledTextReduction(datasets.GeneratorBasedBuilder):
|
107 |
+
# """Controlled Text Reduction: dataset for the Controlled Text Reduction task ().
|
108 |
+
# Each data point consists of a document, a summary, and a list of spans of the document that are the pre-selected content whose summary is the summary"""
|
109 |
+
|
110 |
+
|
111 |
+
# VERSION = datasets.Version("1.0.0")
|
112 |
+
|
113 |
+
# BUILDER_CONFIG_CLASS = ControlledTextReductionConfig
|
114 |
+
|
115 |
+
# BUILDER_CONFIGS = [
|
116 |
+
# ControlledTextReductionConfig(
|
117 |
+
# name="DUC-2001-2002",
|
118 |
+
# version=VERSION,
|
119 |
+
# description="This provides the Controlled Text Reduction dataset extracted from the DUC 2001-2002 Single Document Summarization benchmark",
|
120 |
+
# data_source="DUC-2001-2002"
|
121 |
+
# ),
|
122 |
+
# ControlledTextReductionConfig(
|
123 |
+
# name="CNN-DM",
|
124 |
+
# version=VERSION,
|
125 |
+
# description="This provides the Controlled Text Reduction dataset extracted from the CNN-DM dataset (the train split)",
|
126 |
+
# data_source="CNN-DM"
|
127 |
+
# )
|
128 |
+
# ]
|
129 |
+
|
130 |
+
# DEFAULT_CONFIG_NAME = (
|
131 |
+
# "default" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
132 |
+
# )
|
133 |
+
|
134 |
+
# def _info(self):
|
135 |
+
# features = datasets.Features(
|
136 |
+
# {
|
137 |
+
# "doc_text": datasets.Value("string"),
|
138 |
+
# "summary_text": datasets.Value("string"),
|
139 |
+
# "highlight_spans": datasets.Value("string")
|
140 |
+
# }
|
141 |
+
# )
|
142 |
+
# return datasets.DatasetInfo(
|
143 |
+
# # This is the description that will appear on the datasets page.
|
144 |
+
# description=_DESCRIPTION,
|
145 |
+
# # This defines the different columns of the dataset and their types
|
146 |
+
# features=features, # Here we define them above because they are different between the two configurations
|
147 |
+
# # If there's a common (input, target) tuple from the features,
|
148 |
+
# # specify them here. They'll be used if as_supervised=True in
|
149 |
+
# # builder.as_dataset.
|
150 |
+
# supervised_keys=None,
|
151 |
+
# # Homepage of the dataset for documentation
|
152 |
+
# homepage=_HOMEPAGE,
|
153 |
+
# # License for the dataset if available
|
154 |
+
# license=_LICENSE,
|
155 |
+
# # Citation for the dataset
|
156 |
+
# citation=_CITATION,
|
157 |
+
# )
|
158 |
+
|
159 |
+
# def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager):
|
160 |
+
# """Returns SplitGenerators."""
|
161 |
+
|
162 |
+
# URLs = _URLs[self.config.data_source]
|
163 |
+
# # Download and prepare all files - keep same structure as URLs
|
164 |
+
# corpora = {section: Path(dl_manager.download_and_extract(URLs[section]))
|
165 |
+
# for section in URLs}
|
166 |
+
|
167 |
+
# if self.config.data_source=="CNN-DM":
|
168 |
+
# return [
|
169 |
+
# datasets.SplitGenerator(
|
170 |
+
# name=datasets.Split.TRAIN,
|
171 |
+
# # These kwargs will be passed to _generate_examples
|
172 |
+
# gen_kwargs={
|
173 |
+
# "filepath": corpora["train"]
|
174 |
+
# },
|
175 |
+
# ),
|
176 |
+
# datasets.SplitGenerator(
|
177 |
+
# name=datasets.Split.VALIDATION,
|
178 |
+
# # These kwargs will be passed to _generate_examples
|
179 |
+
# gen_kwargs={
|
180 |
+
# "filepath": corpora["dev"]
|
181 |
+
# },
|
182 |
+
# ),
|
183 |
+
# datasets.SplitGenerator(
|
184 |
+
# name=datasets.Split.TEST,
|
185 |
+
# # These kwargs will be passed to _generate_examples
|
186 |
+
# gen_kwargs={
|
187 |
+
# "filepath": corpora["test"]
|
188 |
+
# },
|
189 |
+
# ),
|
190 |
+
# ]
|
191 |
+
|
192 |
+
# else:
|
193 |
+
# return [
|
194 |
+
# datasets.SplitGenerator(
|
195 |
+
# name=datasets.Split.TRAIN,
|
196 |
+
# # These kwargs will be passed to _generate_examples
|
197 |
+
# gen_kwargs={
|
198 |
+
# "filepath": corpora["train"]
|
199 |
+
# },
|
200 |
+
# ),
|
201 |
+
# datasets.SplitGenerator(
|
202 |
+
# name=datasets.Split.VALIDATION,
|
203 |
+
# # These kwargs will be passed to _generate_examples
|
204 |
+
# gen_kwargs={
|
205 |
+
# "filepath": corpora["dev"]
|
206 |
+
# },
|
207 |
+
# ),
|
208 |
+
# datasets.SplitGenerator(
|
209 |
+
# name=datasets.Split.TEST,
|
210 |
+
# # These kwargs will be passed to _generate_examples
|
211 |
+
# gen_kwargs={
|
212 |
+
# "filepath": corpora["test"]
|
213 |
+
# },
|
214 |
+
# ),
|
215 |
+
# ]
|
216 |
+
|
217 |
+
# def _generate_examples(self, filepath: List[str]):
|
218 |
+
|
219 |
+
# """ Yields Controlled Text Reduction examples from a csv file. Each instance contains the document, the summary and the pre-selected spans."""
|
220 |
+
|
221 |
+
# # merge annotations from sections
|
222 |
+
# df = pd.read_csv(filepath, index_col=False)
|
223 |
+
# for counter, dic in enumerate(df.to_dict('records')):
|
224 |
+
# columns_to_load_into_object = ["doc_text", "summary_text", "highlight_spans"]
|
225 |
+
# for key in columns_to_load_into_object:
|
226 |
+
# dic[key] = eval(dic[key])
|
227 |
+
# yield counter, dic
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
#################################################################################################################################################
|
234 |
+
|
235 |
+
|
236 |
+
|
237 |
+
|
238 |
+
|
239 |
+
|
240 |
# coding=utf-8
|
241 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
242 |
#
|
|
|
251 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
252 |
# See the License for the specific language governing permissions and
|
253 |
# limitations under the License.
|
254 |
+
"""A Dataset loading script for the QA-Discourse dataset (Pyatkin et. al., ACL 2020)."""
|
255 |
|
256 |
|
257 |
import datasets
|
|
|
258 |
from pathlib import Path
|
259 |
+
from typing import List
|
260 |
import pandas as pd
|
261 |
+
|
262 |
+
|
263 |
+
_CITATION = """\
|
264 |
+
@inproceedings{pyatkin2020qadiscourse,
|
265 |
+
title={QADiscourse-Discourse Relations as QA Pairs: Representation, Crowdsourcing and Baselines},
|
266 |
+
author={Pyatkin, Valentina and Klein, Ayal and Tsarfaty, Reut and Dagan, Ido},
|
267 |
+
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
|
268 |
+
pages={2804--2819},
|
269 |
+
year={2020}
|
270 |
+
}"""
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
|
273 |
_DESCRIPTION = """\
|
274 |
+
The dataset contains question-answer pairs to model discourse relations.
|
275 |
+
While answers roughly correspond to spans of the sentence, these spans could have been freely adjusted by annotators to grammaticaly fit the question;
|
276 |
+
Therefore, answers are given just as text and not as identified spans of the original sentence.
|
277 |
+
See the paper for details: QADiscourse - Discourse Relations as QA Pairs: Representation, Crowdsourcing and Baselines, Pyatkin et. al., 2020
|
278 |
"""
|
279 |
|
280 |
+
_HOMEPAGE = "https://github.com/ValentinaPy/QADiscourse"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
+
_LICENSE = """Resources on this page are licensed CC-BY 4.0, a Creative Commons license requiring Attribution (https://creativecommons.org/licenses/by/4.0/)."""
|
283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
_URLs = {
|
286 |
+
"wikinews.train": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikinews_train.tsv",
|
287 |
+
"wikinews.dev": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikinews_dev.tsv",
|
288 |
+
"wikinews.test": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikinews_test.tsv",
|
289 |
+
"wikipedia.train": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_train.tsv",
|
290 |
+
"wikipedia.dev": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_dev.tsv",
|
291 |
+
"wikipedia.test": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_test.tsv",
|
|
|
|
|
|
|
|
|
292 |
}
|
293 |
|
294 |
+
COLUMNS = ['qasrl_id', 'sentence', 'worker_id', 'full_question', 'full_answer',
|
295 |
+
'question_start', 'question_aux', 'question_body', 'answer',
|
296 |
+
'untokenized sentence', 'target indices for untok sent']
|
|
|
|
|
|
|
297 |
|
298 |
|
299 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
300 |
+
class QaDiscourse(datasets.GeneratorBasedBuilder):
|
301 |
+
"""QA-Discourse: Discourse Relations as Question-Answer Pairs. """
|
302 |
|
303 |
+
VERSION = datasets.Version("1.0.2")
|
|
|
|
|
|
|
304 |
|
305 |
BUILDER_CONFIGS = [
|
306 |
+
datasets.BuilderConfig(
|
307 |
+
name="plain_text", version=VERSION, description="This provides the QA-Discourse dataset"
|
|
|
|
|
|
|
308 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
]
|
310 |
|
311 |
DEFAULT_CONFIG_NAME = (
|
312 |
+
"plain_text" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
313 |
)
|
314 |
|
315 |
def _info(self):
|
316 |
features = datasets.Features(
|
317 |
{
|
318 |
+
"sentence": datasets.Value("string"),
|
319 |
+
"sent_id": datasets.Value("string"),
|
320 |
+
"question": datasets.Sequence(datasets.Value("string")),
|
321 |
+
"answers": datasets.Sequence(datasets.Value("string")),
|
322 |
}
|
323 |
)
|
324 |
return datasets.DatasetInfo(
|
|
|
341 |
def _split_generators(self, dl_manager: datasets.utils.download_manager.DownloadManager):
|
342 |
"""Returns SplitGenerators."""
|
343 |
|
344 |
+
# Download and prepare all files - keep same structure as _URLs
|
345 |
+
corpora = {section: Path(dl_manager.download_and_extract(_URLs[section]))
|
346 |
+
for section in _URLs}
|
347 |
+
|
348 |
+
return [
|
349 |
+
datasets.SplitGenerator(
|
350 |
+
name=datasets.Split.TRAIN,
|
351 |
+
# These kwargs will be passed to _generate_examples
|
352 |
+
gen_kwargs={
|
353 |
+
"filepaths": [corpora["wikinews.train"],
|
354 |
+
corpora["wikipedia.train"]],
|
355 |
+
},
|
356 |
+
),
|
357 |
+
datasets.SplitGenerator(
|
358 |
+
name=datasets.Split.VALIDATION,
|
359 |
+
# These kwargs will be passed to _generate_examples
|
360 |
+
gen_kwargs={
|
361 |
+
"filepaths": [corpora["wikinews.dev"],
|
362 |
+
corpora["wikipedia.dev"]],
|
363 |
+
},
|
364 |
+
),
|
365 |
+
datasets.SplitGenerator(
|
366 |
+
name=datasets.Split.TEST,
|
367 |
+
# These kwargs will be passed to _generate_examples
|
368 |
+
gen_kwargs={
|
369 |
+
"filepaths": [corpora["wikinews.test"],
|
370 |
+
corpora["wikipedia.test"]],
|
371 |
+
},
|
372 |
+
),
|
373 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
|
375 |
+
def _generate_examples(self, filepaths: List[str]):
|
376 |
|
377 |
+
"""
|
378 |
+
Yields QA-Discourse examples from a tsv file.
|
379 |
+
Sentences with no QAs will yield an ``empty QA'' record, where both 'question' and 'answers' are empty lists.
|
380 |
+
"""
|
381 |
|
382 |
# merge annotations from sections
|
383 |
+
df = pd.concat([pd.read_csv(fn, sep='\t', error_bad_lines=False) for fn in filepaths]).reset_index(drop=True)
|
384 |
+
df = df.applymap(str) # must turn all values to strings explicitly to avoid type errors
|
385 |
+
for counter, row in df.iterrows():
|
386 |
+
# Prepare question (3 "slots" and question mark)
|
387 |
+
question = [row.question_start, row.question_aux, row.question_body.rstrip('?'), '?']
|
388 |
+
answer = [row.answer]
|
389 |
+
if row.question_start == "_": # sentence has no QAs
|
390 |
+
question = []
|
391 |
+
answer = []
|
392 |
+
|
393 |
+
yield counter, {
|
394 |
+
"sentence": row.sentence,
|
395 |
+
"sent_id": row.qasrl_id,
|
396 |
+
"question": question,
|
397 |
+
"answers": answer,
|
398 |
+
}
|