lovodkin93
commited on
Commit
•
19f0e69
1
Parent(s):
abb1ca3
updated the script
Browse files
Controlled-Text-Reduction-dataset.py
CHANGED
@@ -313,21 +313,28 @@ SOFTWARE."""
|
|
313 |
# },
|
314 |
# }
|
315 |
|
316 |
-
# COLUMNS = ["doc_text", "summary_text", "highlight_spans"]
|
317 |
-
|
318 |
-
|
319 |
_URLs = {
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
"wikipedia.train": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_train.tsv",
|
324 |
-
"wikipedia.dev": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_dev.tsv",
|
325 |
-
"wikipedia.test": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_test.tsv",
|
326 |
}
|
327 |
|
328 |
-
|
329 |
-
|
330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
331 |
|
332 |
|
333 |
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
@@ -345,17 +352,17 @@ class ControlledTectReduction(datasets.GeneratorBasedBuilder):
|
|
345 |
]
|
346 |
|
347 |
DEFAULT_CONFIG_NAME = (
|
348 |
-
"
|
349 |
)
|
350 |
|
351 |
def _info(self):
|
352 |
features = datasets.Features(
|
353 |
{
|
354 |
-
"
|
355 |
-
"
|
356 |
-
"question": datasets.
|
357 |
-
"answers": datasets.Sequence(datasets.Value("string")),
|
358 |
}
|
|
|
359 |
)
|
360 |
return datasets.DatasetInfo(
|
361 |
# This is the description that will appear on the datasets page.
|
@@ -386,49 +393,33 @@ class ControlledTectReduction(datasets.GeneratorBasedBuilder):
|
|
386 |
name=datasets.Split.TRAIN,
|
387 |
# These kwargs will be passed to _generate_examples
|
388 |
gen_kwargs={
|
389 |
-
"filepaths":
|
390 |
-
corpora["wikipedia.train"]],
|
391 |
},
|
392 |
),
|
393 |
datasets.SplitGenerator(
|
394 |
name=datasets.Split.VALIDATION,
|
395 |
# These kwargs will be passed to _generate_examples
|
396 |
gen_kwargs={
|
397 |
-
"filepaths":
|
398 |
-
corpora["wikipedia.dev"]],
|
399 |
},
|
400 |
),
|
401 |
datasets.SplitGenerator(
|
402 |
name=datasets.Split.TEST,
|
403 |
# These kwargs will be passed to _generate_examples
|
404 |
gen_kwargs={
|
405 |
-
"filepaths":
|
406 |
-
corpora["wikipedia.test"]],
|
407 |
},
|
408 |
),
|
409 |
]
|
410 |
|
411 |
-
def _generate_examples(self,
|
412 |
|
413 |
-
"""
|
414 |
-
Yields QA-Discourse examples from a tsv file.
|
415 |
-
Sentences with no QAs will yield an ``empty QA'' record, where both 'question' and 'answers' are empty lists.
|
416 |
-
"""
|
417 |
|
418 |
# merge annotations from sections
|
419 |
-
df = pd.
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
if row.question_start == "_": # sentence has no QAs
|
426 |
-
question = []
|
427 |
-
answer = []
|
428 |
-
|
429 |
-
yield counter, {
|
430 |
-
"sentence": row.sentence,
|
431 |
-
"sent_id": row.qasrl_id,
|
432 |
-
"question": question,
|
433 |
-
"answers": answer,
|
434 |
-
}
|
|
|
313 |
# },
|
314 |
# }
|
315 |
|
|
|
|
|
|
|
316 |
_URLs = {
|
317 |
+
"dev_DUC-2001-2002": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/dev_DUC-2001-2002.csv",
|
318 |
+
"test_DUC-2001-2002": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/test_DUC-2001-2002.csv",
|
319 |
+
"train_DUC-2001-2002": "https://github.com/lovodkin93/Controlled_Text_Reduction/tree/main/data/train_DUC-2001-2002.csv"
|
|
|
|
|
|
|
320 |
}
|
321 |
|
322 |
+
|
323 |
+
COLUMNS = ["doc_text", "summary_text", "highlight_spans"]
|
324 |
+
|
325 |
+
|
326 |
+
# _URLs = {
|
327 |
+
# "wikinews.train": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikinews_train.tsv",
|
328 |
+
# "wikinews.dev": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikinews_dev.tsv",
|
329 |
+
# "wikinews.test": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikinews_test.tsv",
|
330 |
+
# "wikipedia.train": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_train.tsv",
|
331 |
+
# "wikipedia.dev": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_dev.tsv",
|
332 |
+
# "wikipedia.test": "https://github.com/ValentinaPy/QADiscourse/raw/master/Dataset/wikipedia_test.tsv",
|
333 |
+
# }
|
334 |
+
|
335 |
+
# COLUMNS = ['qasrl_id', 'sentence', 'worker_id', 'full_question', 'full_answer',
|
336 |
+
# 'question_start', 'question_aux', 'question_body', 'answer',
|
337 |
+
# 'untokenized sentence', 'target indices for untok sent']
|
338 |
|
339 |
|
340 |
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
|
|
352 |
]
|
353 |
|
354 |
DEFAULT_CONFIG_NAME = (
|
355 |
+
"default" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
356 |
)
|
357 |
|
358 |
def _info(self):
|
359 |
features = datasets.Features(
|
360 |
{
|
361 |
+
"doc_text": datasets.Value("string"),
|
362 |
+
"summary_text": datasets.Value("string"),
|
363 |
+
"question": datasets.Value("string"),
|
|
|
364 |
}
|
365 |
+
|
366 |
)
|
367 |
return datasets.DatasetInfo(
|
368 |
# This is the description that will appear on the datasets page.
|
|
|
393 |
name=datasets.Split.TRAIN,
|
394 |
# These kwargs will be passed to _generate_examples
|
395 |
gen_kwargs={
|
396 |
+
"filepaths": corpora["train_DUC-2001-2002"],
|
|
|
397 |
},
|
398 |
),
|
399 |
datasets.SplitGenerator(
|
400 |
name=datasets.Split.VALIDATION,
|
401 |
# These kwargs will be passed to _generate_examples
|
402 |
gen_kwargs={
|
403 |
+
"filepaths": corpora["dev_DUC-2001-2002"],
|
|
|
404 |
},
|
405 |
),
|
406 |
datasets.SplitGenerator(
|
407 |
name=datasets.Split.TEST,
|
408 |
# These kwargs will be passed to _generate_examples
|
409 |
gen_kwargs={
|
410 |
+
"filepaths": corpora["test_DUC-2001-2002"],
|
|
|
411 |
},
|
412 |
),
|
413 |
]
|
414 |
|
415 |
+
def _generate_examples(self, filepath: List[str]):
|
416 |
|
417 |
+
""" Yields Controlled Text Reduction examples from a csv file. Each instance contains the document, the summary and the pre-selected spans."""
|
|
|
|
|
|
|
418 |
|
419 |
# merge annotations from sections
|
420 |
+
df = pd.read_csv(filepath, index_col=False)
|
421 |
+
for counter, dic in enumerate(df.to_dict('records')):
|
422 |
+
columns_to_load_into_object = ["doc_text", "summary_text", "highlight_spans"]
|
423 |
+
for key in columns_to_load_into_object:
|
424 |
+
dic[key] = eval(dic[key])
|
425 |
+
yield counter, dic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|