
API Documentation

API Documentation

March 29, 2012

Contents

Contents 1

1 Module attrgenfunct 3

1.1 Functions . 3
1.2 Variables . 4

2 Module basefunctions 5

2.1 Functions . 5
2.2 Variables . 9

3 Module contdepfunct 10

3.1 Functions . 10
3.2 Variables . 10

4 Module corruptor 11

4.1 Functions . 11
4.2 Variables . 11
4.3 Class CorruptValue . 11

4.3.1 Methods . 12
4.4 Class CorruptMissingValue . 12

4.4.1 Methods . 12
4.5 Class CorruptValueEdit . 13

4.5.1 Methods . 13
4.6 Class CorruptValueKeyboard . 13

4.6.1 Methods . 14
4.7 Class CorruptValueOCR . 14

4.7.1 Methods . 15
4.8 Class CorruptValuePhonetic . 15

4.8.1 Methods . 16
4.9 Class CorruptCategoricalValue . 17

4.9.1 Methods . 18
4.10 Class CorruptDataSet . 18

4.10.1 Methods . 20

5 Module generator 21

5.1 Variables . 21
5.2 Class GenerateAttribute . 21

5.2.1 Methods . 21

1

CONTENTS CONTENTS

5.3 Class GenerateFreqAttribute . 21
5.3.1 Methods . 22

5.4 Class GenerateFuncAttribute . 22
5.4.1 Methods . 23

5.5 Class GenerateCompoundAttribute . 23
5.5.1 Methods . 23

5.6 Class GenerateCateCateCompoundAttribute . 23
5.6.1 Methods . 25

5.7 Class GenerateCateContCompoundAttribute . 25
5.7.1 Methods . 27

5.8 Class GenerateCateCateContCompoundAttribute . 28
5.8.1 Methods . 30

5.9 Class GenerateContContCompoundAttribute . 31
5.9.1 Methods . 32

5.10 Class GenerateDataSet . 33
5.10.1 Methods . 34

Index 35

2

Module attrgenfunct

1 Module attrgenfunct

1.1 Functions

generate phone number australia()

Randomly generate an Australian telephone number made of a two-digit area code and an
eight-digit number made of two blocks of four digits (with a space between). For example:
‘02 1234 5678’

For details see: http://en.wikipedia.org/wiki/
Telephone numbers in Australia#Personal numbers .2805.29

generate credit card number()

Randomly generate a credit card made of four four-digit numbers (with a space between
each number group). For example: ’1234 5678 9012 3456’

For details see: http://en.wikipedia.org/wiki/Bank card number

generate uniform value(min val, max val, val type)

Randomly generate a numerical value according to a uniform distribution between the
minimum and maximum values given.

The value type can be set as ’int’, so a string formatted as an integer value is returned; or as
’float1’ to ’float9’, in which case a string formatted as floating-point value with the specified
number of digits behind the comma is returned.

Note that for certain situations and string formats a value outside the set range might be
returned. For example, if min val=100.25 and val type=’float1’ the rounding can result in a
string value ’100.2’ to be returned.

Suitable minimum and maximum values need to be selected to prevent such a situation.

generate uniform age(min val, max val)

Randomly generate an age value (returned as integer) according to a

uniform distribution between the minimum and maximum values given.

This function is simple a shorthand for:

generate uniform value(min val, max val, ’int’)

3

Variables Module attrgenfunct

generate normal value(mu, sigma, min val, max val, val type)

Randomly generate a numerical value according to a normal distribution with the mean
(mu) and standard deviation (sigma) given.

A minimum and maximum allowed value can given as additional parameters, if set to None
then no minimum and/or maximum limit is set.

The value type can be set as ’int’, so a string formatted as an integer value is returned; or as
’float1’ to ’float9’, in which case a string formatted as floating-point value with the specified
number of digits behind the comma is returned.

generate normal age(mu, sigma, min val, max val)

Randomly generate an age value (returned as integer) according to a

normal distribution following the mean and standard deviation values

given, and limited to age values between (including) the minimum and

maximum values given.

This function is simple a shorthand for:

generate normal value(mu, sigma, min val, max val, ’int’)

1.2 Variables

Name Description

num test Value: 20

package Value: None

4

Module basefunctions

2 Module basefunctions

2.1 Functions

check is not none(variable, value)

Check if the value given is not None.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check is string(variable, value)

Check if the value given is of type string.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check is unicode string(variable, value)

Check if the value given is of type unicode string.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check is string or unicode string(variable, value)

Check if the value given is of type string or unicode string.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check is non empty string(variable, value)

Check if the value given is of type string and is not an empty string.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check is number(variable, value)

Check if the value given is a number, i.e. of type integer or float.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check is positive(variable, value)

Check if the value given is a positive number, i.e. of type integer or float, and larger than
zero.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

5

Functions Module basefunctions

check is not negative(variable, value)

Check if the value given is a non-negative number, i.e. of type integer or float, and larger
than or equal to zero.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check is normalised(variable, value)

Check if the value given is a number, i.e. of type integer or float, and between (including)
0.0 and 1.0.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check is percentage(variable, value)

Check if the value given is a number, i.e. of type integer or float, and between (including) 0
and 100.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check is integer(variable, value)

Check if the value given is an integer number.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check is float(variable, value)

Check if the value given is a floating-point number.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check is dictionary(variable, value)

Check if the value given is of type dictionary.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check is list(variable, value)

Check if the value given is of type dictionary.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

6

Functions Module basefunctions

check is set(variable, value)

Check if the value given is of type set.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check is tuple(variable, value)

Check if the value given is of type tuple.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check is flag(variable, value)

Check if the value given is either True or False.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check is function or method(variable, value)

Check if the value given is a function or method.

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

check unicode encoding exists(unicode encoding str)

A function which checks if the given Unicode encoding string is known to the Python codec
registry.

If the string is unknown this functions ends with an exception.

char set ascii(s)

Determine if the input string contains digits, letters, or both, as well as whitespaces or not.

Returns a string containing the set of corresponding characters.

check is valid format str(variable, value)

Check if the value given is a valid formatting string for numbers. Possible formatting values
are:

int, float1, float2, float3, float4, float5, float6, float7, float8, or float9

The argument ’variable’ needs to be set to the name (as a string) of the value which is
checked.

7

Functions Module basefunctions

float to str(f, format str)

Convert the given floating-point (or integer) number into a string according to the format
string given.

The format string can be one of ’int’ (return a string that corresponds to an integer value),
or ’float1’, ’float2’, ..., ’float9’ which returns a string of the number with the specified
number of digits behind the comma.

str2comma separated list(s)

A function which splits the values in a list at commas, and checks all values if they are
quoted (double or single) at both ends or not. Quotes are removed.

Note that this function will split values that are quoted but contain one or more commas
into several values.

read csv file(file name, encoding, header line)

Read a comma separated values (CSV) file from disk using the given Unicode

encoding.

Arguments:

file name Name of the file to read.

encoding The name of a Unicode encoding to be used when reading the

file.

If set to None then the standard ’ascii’ encoding will be

used.

header line A flag, set to True or False, that has to be set according

to if the frequency file starts with a header line or not.

This function returns two items:

- If given, a list that contains the values in the header line of the

file. If no header line was given, this item will be set to None.

- A list containing the records in the CSV file, each as a list.

Notes:

- Lines starting with # are assumed to contain comments and will be

skipped. Lines that are empty will also be skipped.

- The CSV files must not contain commas in the values, while values

in quotes (double or single) can be handled.

8

Variables Module basefunctions

write csv file(file name, encoding, header list, file data)

Write a comma separated values (CSV) file to disk using the given Unicode

encoding.

Arguments:

file name Name of the file to write.

encoding The name of a Unicode encoding to be used when reading the

file.

If set to None then the standard ’ascii’ encoding will be

used.

header list A list containing the attribute (field) names to be written

at the beginning of the file.

If no header line is to be written then this argument needs

to be set to None.

file data A list containing the records to be written into the CSV

file. Each record must be a list of values, and these values

will be concatenated with commas and written into the file.

It is assumed the values given do not contain comas.

2.2 Variables

Name Description

package Value: None

9

Variables Module contdepfunct

3 Module contdepfunct

3.1 Functions

blood pressure depending on age(age)

Randomly generate a blood pressure value depending upon the given age value.

It is assumed that for a given age value the blood pressure is normally distributed with an
average blood pressure of 75 at birth (age 0) and of 90 at age 100, and standard deviation in
blood pressure of 4.

salary depending on age(age)

Randomly generate a salary value depending upon the given age value.

It is assumed that for a given age value the salary is uniformly distributed with an average
salary of between 20,000 at age 18 (salary will be set to 0 if an age is below 18) and 80,000
at age 60.

The minimum salary will stay at 10,000 while the maximum salary will increase from 30,000
at age 18 to 150,000 at age 60.

3.2 Variables

Name Description

package Value: None

10

Class CorruptValue Module corruptor

4 Module corruptor

Module containing several classes to corrupt synthetic data according to user specification.

4.1 Functions

position mod uniform(in str)

Select any position in the given input string with uniform likelihood.

Return 0 is the string is empty.

position mod normal(in str)

Select any position in the given input string with normally distributed likelihood where the
average of the normal distribution is set to one character behind the middle of the string,
and the standard deviation is set to 1/4 of the string length.

This is based on studies on the distribution of errors in real text which showed that errors
such as typographical mistakes are more likely to appear towards the middle and end of a
string but not at the beginning.

Return 0 is the string is empty.

4.2 Variables

Name Description

package Value: None

4.3 Class CorruptValue

Known Subclasses: corruptor.CorruptCategoricalValue, corruptor.CorruptMissingValue, corruptor.CorruptValueEdit,
corruptor.CorruptValueKeyboard, corruptor.CorruptValueOCR, corruptor.CorruptValuePhonetic

Base class for the definition of corruptor that is applied on a single

attribute (field) in the data set.

This class and all of its derived classes provide methods that allow the

definition of how values in a single attribute are corrupted (modified)

and the parameters necessary for the corruption process.

The following variables need to be set when a CorruptValue instance is

initialised (with further parameters listed in the derived classes):

position function A function that (somehow) determines the location

within a string value of where a modification

(corruption) is to be applied. The input of this

function is assumed to be a string and its return value

11

Class CorruptMissingValue Module corruptor

an integer number in the range of the length of the

given input string.

4.3.1 Methods

init (self, base kwargs)

Constructor, set general attributes.

corrupt value(self, str)

Method which corrupts the given input string and returns the modified string. See
implementations in derived classes for details.

4.4 Class CorruptMissingValue

corruptor.CorruptValue

corruptor.CorruptMissingValue

A corruptor method which simply sets an attribute value to a missing

value.

The additional argument (besides the base class argument

’position function’) that has to be set when this attribute type is

initialised are:

missing val The string which designates a missing value. Default value

is the empty string ’’.

Note that the ’position function’ is not required by this corruptor

method.

4.4.1 Methods

init (self, **kwargs)

Constructor. Process the derived keywords first, then call the base class constructor.

Overrides: corruptor.CorruptValue. init

corrupt value(self, in str)

Simply return the missing value string.

Overrides: corruptor.CorruptValue.corrupt value

12

Class CorruptValueEdit Module corruptor

4.5 Class CorruptValueEdit

corruptor.CorruptValue

corruptor.CorruptValueEdit

A simple corruptor which applies one edit operation on the given value.

Depending upon the content of the value (letters, digits or mixed), if the

edit operation is an insert or substitution a character from the same set

(letters, digits or both) is selected.

The additional arguments (besides the base class argument

’position function’) that has to be set when this attribute type is

initialised are:

char set funct A function which determines the set of characters that

can be inserted or used of substitution

insert prob These for values set the likelihood of which edit

delete prob operation will be selected.

substitute prob All four probability values must be between 0 and 1, and

transpose prob the sum of these four values must be 1.0

4.5.1 Methods

init (self, **kwargs)

Constructor. Process the derived keywords first, then call the base class constructor.

Overrides: corruptor.CorruptValue. init

corrupt value(self, in str)

Method which corrupts the given input string and returns the modified string by randomly
selecting an edit operation and position in the string where to apply this edit.

Overrides: corruptor.CorruptValue.corrupt value

4.6 Class CorruptValueKeyboard

corruptor.CorruptValue

corruptor.CorruptValueKeyboard

Use a keyboard layout to simulate typing errors. They keyboard is

hard-coded into this method, but can be changed easily for different

keyboard layout.

A character from the original input string will be randomly chosen using

the position function, and then a character from either the same row or

column in the keyboard will be selected.

13

Class CorruptValueOCR Module corruptor

The additional arguments (besides the base class argument

’position function’) that have to be set when this attribute type is

initialised are:

row prob The probability that a neighbouring character in the same row

is selected.

col prob The probability that a neighbouring character in the same

column is selected.

The sum of row prob and col prob must be 1.0.

4.6.1 Methods

init (self, **kwargs)

Constructor. Process the derived keywords first, then call the base class constructor.

Overrides: corruptor.CorruptValue. init

corrupt value(self, in str)

Method which corrupts the given input string by replacing a single character with a
neighbouring character given the defined keyboard layout at a position randomly selected by
the position function.

Overrides: corruptor.CorruptValue.corrupt value

4.7 Class CorruptValueOCR

corruptor.CorruptValue

corruptor.CorruptValueOCR

Simulate OCR errors using a list of similar pairs of characters or strings

that will be applied on the original string values.

These pairs of characters will be loaded from a look-up file which is a

CSV file with two columns, the first is a single character or character

sequence, and the second column is also a single character or character

sequence. It is assumed that the second value is an OCR modification of

the first value, and the other way round. For example:

5,S

5,s

2,Z

2,z

1,|
6,G

14

Class CorruptValuePhonetic Module corruptor

It is possible for an ’original’ string value (first column) to have

several variations (second column). In such a case one variation will be

randomly selected during the value corruption (modification) process.

The additional arguments (besides the base class argument

’position function’) that have to be set when this attribute type is

initialised are:

lookup file name Name of the file which contains the OCR character

variations.

has header line A flag, set to True or False, that has to be set

according to if the look-up file starts with a header

line or not.

unicode encoding The Unicode encoding (a string name) of the file.

4.7.1 Methods

init (self, **kwargs)

Constructor. Process the derived keywords first, then call the base class constructor.

Overrides: corruptor.CorruptValue. init

corrupt value(self, in str)

Method which corrupts the given input string by replacing a single character or a sequence of
characters with an OCR variation at a position randomly selected by the position function.

If there are several OCR variations then one will be randomly chosen.

Overrides: corruptor.CorruptValue.corrupt value

4.8 Class CorruptValuePhonetic

corruptor.CorruptValue

corruptor.CorruptValuePhonetic

Simulate phonetic errors using a list of phonetic rules which are stored

in a CSV look-up file.

Each line (row) in the CSV file must consist of seven columns that contain

the following information:

1) Where a phonetic modification can be applied. Possible values are:

’ALL’,’START’,’END’,’MIDDLE’

2) The original character sequence (i.e. the characters to be replaced)

3) The new character sequence (which will replace the original sequence)

4) Precondition: A condition that must occur before the original string

character sequence in order for this rule to become applicable.

15

Class CorruptValuePhonetic Module corruptor

5) Postcondition: Similarly, a condition that must occur after the

original string character sequence in order for this rule to become

applicable.

6) Pattern existence condition: This condition requires that a certain

given string character sequence does (’y’ flag) or does not (’n’ flag)

occur in the input string.

7) Start existence condition: Similarly, this condition requires that the

input string starts with a certain string pattern (’y’ flag) or not

(’n’ flag)

A detailed description of this phonetic data generation is available in

Accurate Synthetic Generation of Realistic Personal Information

Peter Christen and Agus Pudjijono

Proceedings of the Pacific-Asia Conference on Knowledge Discovery and

Data Mining (PAKDD), Bangkok, Thailand, April 2009.

For a given input string, one of the possible phonetic modifications will

be randomly selected without the use of the position function.

The additional arguments (besides the base class argument

’position function’) that have to be set when this attribute type is

initialised are:

lookup file name Name of the file which contains the phonetic

modification patterns.

has header line A flag, set to True or False, that has to be set

according to if the look-up file starts with a header

line or not.

unicode encoding The Unicode encoding (a string name) of the file.

Note that the ’position function’ is not required by this corruptor

method.

4.8.1 Methods

init (self, **kwargs)

Constructor. Process the derived keywords first, then call the base class constructor.

Overrides: corruptor.CorruptValue. init

apply change (self, in str, ch)

Helper function which will apply the selected change to the input string.

Developed by Agus Pudjijono, ANU, 2008.

16

Class CorruptCategoricalValue Module corruptor

slavo germanic (self, in str)

Helper function which determines if the inputstring could contain a Slavo or Germanic name.

Developed by Agus Pudjijono, ANU, 2008.

collect replacement (self, s, where, orgpat, newpat, precond, postcond, existcond,
startcond)

Helper function which collects all the possible phonetic modification

patterns that are possible on the given input string, and replaces a

pattern in a string.

The following arguments are needed:

- where Can be one of: ’ALL’,’START’,’END’,’MIDDLE’

- precond Pre-condition (default ’None’) can be ’V’ for vowel or

’C’ for consonant

- postcond Post-condition (default ’None’) can be ’V’ for vowel or

’C’ for consonant

Developed by Agus Pudjijono, ANU, 2008.

get transformation (self, in str)

Helper function which generates the list of possible phonetic modifications for the given
input string.

Developed by Agus Pudjijono, ANU, 2008.

corrupt value(self, in str)

Method which corrupts the given input string by applying a phonetic modification.

If several such modifications are possible then one will be randomly selected.

Overrides: corruptor.CorruptValue.corrupt value

4.9 Class CorruptCategoricalValue

corruptor.CorruptValue

corruptor.CorruptCategoricalValue

Replace a categorical value with another categorical value from the same

look-up file.

This corruptor can be used to modify attribute values with known

misspellings.

The look-up file is a CSV file with two columns, the first is a

categorical value that is expected to be in an attribute in an original

record, and the second is a variation of this categorical value.

17

Class CorruptDataSet Module corruptor

It is possible for an ’original’ categorical value (first column) to have

several misspelling variations (second column). In such a case one

misspelling will be randomly selected.

The additional arguments (besides the base class argument

’position function’) that have to be set when this attribute type is

initialised are:

lookup file name Name of the file which contains the categorical values

and their misspellings.

has header line A flag, set to True or False, that has to be set

according to if the look-up file starts with a header

line or not.

unicode encoding The Unicode encoding (a string name) of the file.

Note that the ’position function’ is not required by this corruptor

method.

4.9.1 Methods

init (self, **kwargs)

Constructor. Process the derived keywords first, then call the base class constructor.

Overrides: corruptor.CorruptValue. init

corrupt value(self, in str)

Method which corrupts the given input string and replaces it with a misspelling, if there is a
known misspelling for the given original value.

If there are several known misspellings for the given original value then one will be randomly
selected.

Overrides: corruptor.CorruptValue.corrupt value

4.10 Class CorruptDataSet

Class which provides methods to corrupt the original records generated by

one of the classes derived from the GenerateDataSet base class.

The following arguments need to be set when a GenerateDataSet instance is

initialised:

number of mod records The number of modified (corrupted) records that are

to be generated. This will correspond to the number

of ’duplicate’ records that are generated.

18

Class CorruptDataSet Module corruptor

number of org records The number of original records that were generated

by the GenerateDataSet class.

attribute name list The list of attributes (fields) that have been

generated for each record.

max num dup per rec The maximum number of modified (corrupted) records

that can be generated for a single original record.

num dup dist The probability distribution used to create the

duplicate records for one original record (possible

distributions are: ’uniform’, ’poisson’, ’zipf’)

max num mod per attr The maximum number of modifications are to be

applied on a single attribute.

num mod per rec The number of modification that are to be applied

to a record

attr mod prob dict This dictionary contains probabilities that

determine how likely an attribute is selected for

random modification (corruption).

Keys are attribute names and values are probability

values. The sum of the given probabilities must sum

to 1.0.

Not all attributes need to be listed in this

dictionary, only the ones onto which modifications

are to be applied.

An example of such a dictionary is given below.

attr mod data dict A dictionary which contains for each attribute that

is to be modified a list which contains as pairs of

probabilities and corruptor objects (i.e. objects

based on any of the classes derived from base class

CorruptValue).

For each attribute listed, the sum of probabilities

given in its list must sum to 1.0.

An example of such a dictionary is given below.

Example for ’attr mod prob dict’:

attr mod prob dict = {’surname’:0.4, ’address’:0.6}

In this example, the surname attribute will be selected for modification

with a 40% likelihood and the address attribute with a 60% likelihood.

Example for ’attr mod data dict’:

attr mod data dict = {’surname’:[(0.25,corrupt ocr), (0.50:corrupt edit),

(0.25:corrupt keyboard)],

’address’:[(0.50:corrupt ocr), (0.20:missing value),

19

Class CorruptDataSet Module corruptor

(0.25:corrupt keyboard)]}

In this example, if the ’surname’ is selected for modification, with a

25% likelihood an OCR modification will be applied, with 50% likelihood a

character edit modification will be applied, and with 25% likelihood a

keyboard typing error modification will be applied.

If the ’address’ attribute is selected, then with 50% likelihood an OCR

modification will be applied, with 20% likelihood a value will be set to

a missing value, and with 25% likelihood a keyboard typing error

modification will be applied.

4.10.1 Methods

init (self, **kwargs)

Constructor, set attributes.

corrupt records(self, rec dict)

Method to corrupt modify the records in the given record dictionary according to the
settings of the data set corruptor.

20

Class GenerateAttribute Module generator

5 Module generator

Module containing several classes to generate synthetic data according to user specification.

5.1 Variables

Name Description

package Value: None

5.2 Class GenerateAttribute

Known Subclasses: generator.GenerateFreqAttribute, generator.GenerateFuncAttribute

Base class for the definition of a single attribute (field) to be

generated.

This class and all of its derived classes provide methods that allow the

definition of a single attribute and the parameters necessary for its

generation.

The following variables need to be set when a GenerateAttribute instance

is initialised (with further parameters listed in the derived classes):

attribute name The name of this attribute, which will be used in the

header line to be written into the output file.

Ideally, this attribute name should be short, not contain

spaces and it must not contain any quote or punctuation

characters.

5.2.1 Methods

init (self, base kwargs)

Constructor, set general attributes.

create attribute value(self)

Method which creates and returns one attribute value. See implementations in derived
classes for details.

5.3 Class GenerateFreqAttribute

generator.GenerateAttribute

generator.GenerateFreqAttribute

21

Class GenerateFuncAttribute Module generator

Generate an attribute where values are retrieved from a lookup table that

contains categorical attribute values and their frequencies.

The additional argument (besides the base class argument ’attribute name’)

that has to be set when this attribute type is initialised are:

freq file name The name of the file which contains the attribute values

and their frequencies.

This file must be in comma separated values (CSV) format

with the first column being the attribute values and the

second column their counts (positive integer numbers).

Each attribute value must only occur once in the

frequency file.

has header line A flag, set to True or False, that has to be set

according to if the frequency file starts with a header

line or not.

unicode encoding The Unicode encoding (a string name) of the file.

5.3.1 Methods

init (self, **kwargs)

Constructor. Process the derived keywords first, then call the base class constructor.

Overrides: generator.GenerateAttribute. init

create attribute value(self)

Method which creates and returns one attribute value randomly selected from the attribute
value lookup table.

Overrides: generator.GenerateAttribute.create attribute value

5.4 Class GenerateFuncAttribute

generator.GenerateAttribute

generator.GenerateFuncAttribute

Generate an attribute where values are retrieved from a function that

creates values according to some specification.

Such functions include creating telephone numbers or social security

numbers with a certain structure, or numerical values normally or

uniformly distributed according to some parameter setting.

The additional argument (besides the base class argument ’attribute name’)

22

Class GenerateCompoundAttribute Module generator

that has to be set when this attribute type is initialised are:

function A Python function that, when called, has to return a string

value that is created according to some specification.

parameters A list of one or more parameters (maximum 5) passed to the

function when it is called.

5.4.1 Methods

init (self, **kwargs)

Constructor. Process the derived keywords first, then call the base class constructor.

Overrides: generator.GenerateAttribute. init

create attribute value(self)

Method which creates and returns one attribute value generated by the function provided.

Overrides: generator.GenerateAttribute.create attribute value

5.5 Class GenerateCompoundAttribute

Known Subclasses: generator.GenerateCateCateCompoundAttribute, generator.GenerateCateCateContCompoundAttribute,
generator.GenerateCateContCompoundAttribute, generator.GenerateContContCompoundAttribute

Base class for the definition of compound attributes (fields) to be generated.

This class and all of its derived classes provide methods that allow the definition of several (are least two)
attributes and the parameters necessary for their generation.

This base class does not have any generic variables that need to be set.

5.5.1 Methods

init (self, base kwargs)

Constructor. See implementations in derived classes for details.

create attribute value(self)

Method which creates and returns several (compound) attribute values. See
implementations in derived classes for details.

5.6 Class GenerateCateCateCompoundAttribute

generator.GenerateCompoundAttribute

generator.GenerateCateCateCompoundAttribute

23

Class GenerateCateCateCompoundAttribute Module generator

Generate two attributes, both containing categorical values, where the

values of the second attribute depend upon the values in the first

attribute.

This for example allows the modelling of:

- city location values that depend upon gender values, or

- medication name values that depend upon gender values.

The arguments that have to be set when this attribute type is initialised

are:

categorical1 attribute name The name of the first categorical attribute

that will be generated. This name will be

used in the header line to be written into

the output file.

categorical2 attribute name The name of the second categorical attribute

that will be generated. This name will be

used in the header line to be written into

the output file.

lookup file name Name of the file which contains the values of

the first categorical attribute, and for each

of these values the names of the categories

and their counts of the second categorical

attribute. This file format is further

explained below.

has header line A flag, set to True or False, that has to be

set according to if the look-up file starts

with a header line or not.

unicode encoding The Unicode encoding (a string name) of the

file.

The format of the look-up file is:

Comment lines start with the # character

cate attr1 val,count,cate attr2 val1,count1,cate attr2 val2,count2, cate attr2 val3,count3,cate attr2

The look-up file is a comma separated values (CSV) file which contains

two types of rows:

A) The first type of row contains the following columns:

1) A categorical value. For all possible values of the first

categorical attribute, one row must be specified in this look-up

file.

2) Count of this categorical value (a positive integer number). This

determines the likelihood of how often a certain categorical value

will be chosen. This count must be a positive integer number.

3) The first categorical value of the second attribute.

4) The count (positive integer number) of this first categorical

24

Class GenerateCateContCompoundAttribute Module generator

value.

5) The second categorical value of the second attribute.

6) The count of this second categorical value.

...

X) A ’’ character, which indicates that the following line (row)

contains further categorical values and their counts from the

second attribute.

B) The second type of row contains the following columns:

1) A categorical value of the second attribute.

2) The count of this categorical value.

3) Another categorical value of the second attribute.

4) The count of this categorical value.

...

Example:

male,60,canberra,7, sydney,30,melbourne,45, perth,18

female,40,canberra,10,sydney,40, melbourne,20,brisbane,30,hobart,5, perth,20

5.6.1 Methods

init (self, **kwargs)

Constructor. Process the derived keywords first, then call the base class constructor.

Overrides: generator.GenerateCompoundAttribute. init

create attribute values(self)

Method which creates and returns two categorical attribute values, where the second value
depends upon the first value. Both categorical values are randomly selected according to the
provided frequency distributions.

Inherited from generator.GenerateCompoundAttribute(Section 5.5)

create attribute value()

5.7 Class GenerateCateContCompoundAttribute

generator.GenerateCompoundAttribute

generator.GenerateCateContCompoundAttribute

Generate two attributes, one containing categorical values and the other

continuous values, where the continuous values depend upon the categorical

values.

25

Class GenerateCateContCompoundAttribute Module generator

This for example allows the modelling of:

- salary values that depend upon gender values, or

- blood pressure values that depend upon age values.

The arguments that have to be set when this attribute type is initialised

are:

categorical attribute name The name of the categorical attribute that

will be generated. This name will be used in

the header line to be written into the output

file.

continuous attribute name The name of the continuous attribute that will

be generated. This name will be used in the

header line to be written into the output

file.

lookup file name Name of the file which contains the values of

the continuous attribute, and for each of these

values the name of a function (and its

parameters) that is used to generate the

continuous values. This file format is further

explained below.

has header line A flag, set to True or False, that has to be

set according to if the look-up file starts

with a header line or not.

unicode encoding The Unicode encoding (a string name) of the

file.

continuous value type The format of how continuous values are

returned when they are generated. Possible

values are ’int’, so integer values are

returned; or ’float1’, ’float2’, to ’float9’,

in which case floating-point values with the

specified number of digits behind the comma

are returned.

The format of the look-up file is:

Comment lines start with the # character

cate val,count,funct name,funct param 1,...,funct param N

26

Class GenerateCateContCompoundAttribute Module generator

The look-up file is a comma separated values (CSV) file with the following

columns:

1) A categorical value. For all possible categorical values of an

attribute, one row must be specified in this look-up file.

2) Count of this categorical value (a positive integer number). This

determines the likelihood of how often a certain categorical value will

be chosen.

3) A function which generates the continuous value for this categorical

value. Implemented functions currently are:

- uniform

- normal

4) The parameters required for the function that generates the continuous

values. They are:

- uniform: min val, max val

- normal: mu, sigma, min val, max val

(min val and max val can be set to None in which case no

minimum or maximum is enforced)

Example:

male,60,uniform,20000,100000

female,40,normal,35000,100000,10000,None

5.7.1 Methods

init (self, **kwargs)

Constructor. Process the derived keywords first, then call the base class
constructor.

Overrides: generator.GenerateCompoundAttribute. init

create attribute values(self)

Method which creates and returns two attribute values, one categorical and
one continuous, with the categorical value randomly selected according to the
provided frequency distribution, and the continuous value according to the
selected function and its parameters.

Inherited from generator.GenerateCompoundAttribute(Section 5.5)

create attribute value()

27

Class GenerateCateCateContCompoundAttribute Module generator

5.8 Class GenerateCateCateContCompoundAttribute

generator.GenerateCompoundAttribute

generator.GenerateCateCateContCompoundAttribute

Generate three attributes, thefirst two containing categorical values and

the third containing continuous values, where the values of the second

attribute depend upon the values in the first attribute, and the values

of the third attribute depend upon both the values of the first and second

attribute.

This for example allows the modelling of:

- blood pressure depending upon gender and city of residence values, or

- salary depending upon gender and profession values.

The arguments that have to be set when this attribute type is initialised

are:

categorical1 attribute name The name of the first categorical attribute

that will be generated. This name will be

used in the header line to be written into

the output file.

categorical2 attribute name The name of the second categorical attribute

that will be generated. This name will be

used in the header line to be written into

the output file.

continuous attribute name The name of the continuous attribute that

will be generated. This name will be used in

the header line to be written into the output

file.

lookup file name Name of the file which contains the values

of the first categorical attribute, and for

each of these values the names of the

categories and their counts of the second

categorical attribute, and for each of these

values the name of a function (and its

parameters) that is used to generate the

continuous values. This file format is

further explained below.

28

Class GenerateCateCateContCompoundAttribute Module generator

has header line A flag, set to True or False, that has to be

set according to if the look-up file starts

with a header line or not.

unicode encoding The Unicode encoding (a string name) of the

file.

continuous value type The format of how continuous values are

returned when they are generated. Possible

values are ’int’, so integer values are

returned; or ’float1’, ’float2’, to

’float9’, in which case floating-point

values with the specified number of digits

behind the comma are returned.

The format of the look-up file is:

Comment lines start with the # character

cate attr1 val1,count

cate attr2 val1,count,funct name,funct param 1,...,funct param N

cate attr2 val2,count,funct name,funct param 1,...,funct param N

cate attr2 val3,count,funct name,funct param 1,...,funct param N

...

cate attr2 valX,count,funct name,funct param 1,...,funct param N

cate attr1 val2,count

cate attr2 val1,count,funct name,funct param 1,...,funct param N

cate attr2 val2,count,funct name,funct param 1,...,funct param N

cate attr2 val3,count,funct name,funct param 1,...,funct param N

...

cate attr2 valX,count,funct name,funct param 1,...,funct param N

cate attr1 val3,count

...

The look-up file is a comma separated values (CSV) file with the following

structure:

A) One row that contains two values:

1) A categorical value of the first attribute. For all possible values

of the first categorical attribute, one row must be specified in

this look-up file.

2) The count of this categorical value (a positive integer number).

This determines the likelihood of how often a certain categorical

value will be chosen.

29

Class GenerateCateCateContCompoundAttribute Module generator

B) After a row with two values, as described under A), one or more rows

containing the following values in columns must be given:

1) A categorical value from the second categorical attribute.

2) The count of this categorical value (a positive integer number).

This determines the likelihood of how often a certain categorical

value will be chosen.

3) A function which generates the continuous value for this categorical

value. Implemented functions currently are:

- uniform

- normal

4) The parameters required for the function that generates the

continuous values. They are:

- uniform: min val, max val

- normal: mu, sigma, min val, max val

(min val and max val can be set to None in which case no

minimum or maximum is enforced)

Example:

male,60

canberra,20,uniform,50000,90000

sydney,30,normal,75000,50000,20000,None

melbourne,30,uniform,35000,200000

perth,20,normal,55000,250000,15000,None

female,40

canberra,10,normal,45000,10000,None,150000

sydney,40,uniform,60000,200000

melbourne,20,uniform,50000,1750000

brisbane,30,normal,55000,20000,20000,100000

5.8.1 Methods

init (self, **kwargs)

Constructor. Process the derived keywords first, then call the base class
constructor.

Overrides: generator.GenerateCompoundAttribute. init

30

Class GenerateContContCompoundAttribute Module generator

create attribute values(self)

Method which creates and returns two categorical attribute values and one
continuous value, where the second categorical value depends upon the first
value, andthe continuous value depends on both categorical values. The two
categorical values are randomly selected according to the provided frequency
distributions, while the continuous value is generated according to the selected
function and its parameters.

Inherited from generator.GenerateCompoundAttribute(Section 5.5)

create attribute value()

5.9 Class GenerateContContCompoundAttribute

generator.GenerateCompoundAttribute

generator.GenerateContContCompoundAttribute

Generate two continuous attribute values, where the value of the second

attribute depends upon the value of the first attribute.

This for example allows the modelling of:

- salary values that depend upon age values, or

- blood pressure values that depend upon age values.

The arguments that have to be set when this attribute type is initialised

are:

continuous1 attribute name The name of the first continuous attribute

that will be generated. This name will be

used in the header line to be written into

the output file.

continuous2 attribute name The name of the second continuous attribute

that will be generated. This name will be

used in the header line to be written into

the output file.

continuous1 funct name The name of the function that is used to

randomly generate the values of the first

attribute. Implemented functions currently

are:

- uniform

- normal

31

Class GenerateContContCompoundAttribute Module generator

continuous1 funct param A list with the parameters required for the

function that generates the continuous values

in the first attribute. They are:

- uniform: [min val, max val]

- normal: [mu, sigma, min val, max val]

(min val and max val can be set

to None in which case no minimum

or maximum is enforced)

continuous2 function A Python function that has a floating-point

value as input (assumed to be a value

generated for the first attribute) and that

returns a floating-point value (assumed to be

the value of the second attribute).

continuous1 value type The format of how the continuous values in

the first attribute are returned when they

are generated. Possible values are ’int’, so

integer values are generated; or ’float1’,

’float2’, to ’float9’, in which case

floating-point values with the specified

number of digits behind the comma are

generated.

continuous2 value type The same as for the first attribute.

5.9.1 Methods

init (self, **kwargs)

Constructor. Process the derived keywords first, then call the base class
constructor.

Overrides: generator.GenerateCompoundAttribute. init

create attribute values(self)

Method which creates and returns two continuous attribute values, with the
the first continuous value according to the selected function and its
parameters, and the second value depending upon the first value.

Inherited from generator.GenerateCompoundAttribute(Section 5.5)

create attribute value()

32

Class GenerateDataSet Module generator

5.10 Class GenerateDataSet

Base class for data set generation.

This class and all of its derived classes provide methods that allow the

generation of a synthetic data set according to user specifications.

The following arguments need to be set when a GenerateDataSet instance is

initialised:

output file name The name of the file that will be generated. This

will be a comma separated values (CSV) file. If the

file name given does not end with the extension

’.csv’ then this extension will be added.

write header line A flag (True or false) indicating if a header line

with the attribute (field) names is to be written at

the beginning of the output file or not. The default

for this argument is True.

rec id attr name The name of the record identifier attribute. This

name must be different from the names of all other

generated attributes. Record identifiers will be

unique values for each generated record.

number of records The number of records that are to be generated. This

will correspond to the number of ’original’ records

that are generated.

attribute name list The list of attributes (fields) that are to be

generated for each record, and the sequence how they

are to be written into the output file. Each element

in this list must be an attribute name. These names

will become the header line of the output file (if

a header line is to be written).

attribute data list A list which contains the actual attribute objects

(from the classes GenerateAttribute and

GenerateCompoundAttribute and their respective

derived classes).

unicode encoding The Unicode encoding (a string name) of the file.

33

Class GenerateDataSet Module generator

5.10.1 Methods

init (self, **kwargs)

Constructor, set general attributes.

generate(self)

Method which runs the generation process and generates the specified number
of records.

This method return a list containing the ’number of records’ generated
records, each being a dictionary with the keys being attribute names and
values the corresponding attribute values.

write(self)

Write the generated records into the defined output file.

34

Index

attrgenfunct (module), 3–4
attrgenfunct.generate credit card number

(function), 3
attrgenfunct.generate normal age (function),

4
attrgenfunct.generate normal value (func-

tion), 3
attrgenfunct.generate phone number australia

(function), 3
attrgenfunct.generate uniform age (func-

tion), 3
attrgenfunct.generate uniform value (func-

tion), 3

basefunctions (module), 5–9
basefunctions.char set ascii (function), 7
basefunctions.check is dictionary (function),

6
basefunctions.check is flag (function), 7
basefunctions.check is float (function), 6
basefunctions.check is function or method

(function), 7
basefunctions.check is integer (function),

6
basefunctions.check is list (function), 6
basefunctions.check is non empty string (func-

tion), 5
basefunctions.check is normalised (function),

6
basefunctions.check is not negative (func-

tion), 5
basefunctions.check is not none (function),

5
basefunctions.check is number (function),

5
basefunctions.check is percentage (function),

6
basefunctions.check is positive (function),

5
basefunctions.check is set (function), 6
basefunctions.check is string (function), 5
basefunctions.check is string or unicode string

(function), 5

basefunctions.check is tuple (function), 7
basefunctions.check is unicode string (func-

tion), 5
basefunctions.check is valid format str (func-

tion), 7
basefunctions.check unicode encoding exists

(function), 7
basefunctions.float to str (function), 7
basefunctions.read csv file (function), 8
basefunctions.str2comma separated list (func-

tion), 8
basefunctions.write csv file (function), 8

contdepfunct (module), 10
contdepfunct.blood pressure depending on age

(function), 10
contdepfunct.salary depending on age (func-

tion), 10
corruptor (module), 11–20

corruptor.CorruptCategoricalValue (class),
17–18

corruptor.CorruptDataSet (class), 18–20
corruptor.CorruptDataSet. init (method),
20

corruptor.CorruptDataSet.corrupt records
(method), 20

corruptor.CorruptMissingValue (class), 12
corruptor.CorruptValue (class), 11–12
corruptor.CorruptValue. init (method),
12

corruptor.CorruptValue.corrupt value (method),
12

corruptor.CorruptValueEdit (class), 12–
13

corruptor.CorruptValueKeyboard (class),
13–14

corruptor.CorruptValueOCR (class), 14–
15

corruptor.CorruptValuePhonetic (class), 15–
17

corruptor.CorruptValuePhonetic. apply change
(method), 16

35

INDEX INDEX

corruptor.CorruptValuePhonetic. collect replacement
(method), 17

corruptor.CorruptValuePhonetic. get transformation
(method), 17

corruptor.CorruptValuePhonetic. slavo germanic
(method), 16

corruptor.position mod normal (function),
11

corruptor.position mod uniform (function),
11

generator (module), 21–34
generator.GenerateAttribute (class), 21
generator.GenerateAttribute. init (method),
21

generator.GenerateAttribute.create attribute value
(method), 21

generator.GenerateCateCateCompoundAttribute
(class), 23–25

generator.GenerateCateCateCompoundAttribute.create attribute values
(method), 25

generator.GenerateCateCateContCompoundAttribute
(class), 27–31

generator.GenerateCateCateContCompoundAttribute.create attribute values
(method), 30

generator.GenerateCateContCompoundAttribute
(class), 25–27

generator.GenerateCateContCompoundAttribute.create attribute values
(method), 27

generator.GenerateCompoundAttribute (class),
23

generator.GenerateCompoundAttribute. init
(method), 23

generator.GenerateCompoundAttribute.create attribute value
(method), 23

generator.GenerateContContCompoundAttribute
(class), 31–32

generator.GenerateContContCompoundAttribute.create attribute values
(method), 32

generator.GenerateDataSet (class), 32–34
generator.GenerateDataSet. init (method),
34

generator.GenerateDataSet.generate (method),
34

generator.GenerateDataSet.write (method),
34

generator.GenerateFreqAttribute (class),
21–22

generator.GenerateFuncAttribute (class),
22–23

36

	Contents
	Module attrgenfunct
	Functions
	Variables

	Module basefunctions
	Functions
	Variables

	Module contdepfunct
	Functions
	Variables

	Module corruptor
	Functions
	Variables
	Class CorruptValue
	Methods

	Class CorruptMissingValue
	Methods

	Class CorruptValueEdit
	Methods

	Class CorruptValueKeyboard
	Methods

	Class CorruptValueOCR
	Methods

	Class CorruptValuePhonetic
	Methods

	Class CorruptCategoricalValue
	Methods

	Class CorruptDataSet
	Methods

	Module generator
	Variables
	Class GenerateAttribute
	Methods

	Class GenerateFreqAttribute
	Methods

	Class GenerateFuncAttribute
	Methods

	Class GenerateCompoundAttribute
	Methods

	Class GenerateCateCateCompoundAttribute
	Methods

	Class GenerateCateContCompoundAttribute
	Methods

	Class GenerateCateCateContCompoundAttribute
	Methods

	Class GenerateContContCompoundAttribute
	Methods

	Class GenerateDataSet
	Methods

	Index

