SIGKDD Explorations

Development and User Experiences of an Open Source
Data Cleaning, Deduplication and Record Linkage System

Peter Christen
School of Computer Science
The Australian National University
Canberra ACT 0200, Australia

peter.christen@anu.edu.au

ABSTRACT

Record linkage, also known as database matching or entity
resolution, is now recognised as a core step in the KDD
process. Data mining projects increasingly require that in-
formation from several sources is combined before the actual
mining can be conducted. Also of increasing interest is the
deduplication of a single database. The objectives of record
linkage and deduplication are to identify, match and merge
all records that relate to the same real-world entities. Be-
cause real-world data is commonly ‘dirty’, data cleaning is
an important first step in many deduplication, record link-
age, and data mining projects.

In this paper, an overview of the Febrl (Freely Extensible
Biomedical Record Linkage) system is provided, and the re-
sults of a recent survey of Febrl users is discussed. Febrl in-
cludes a variety of functionalities required for data cleaning,
deduplication and record linkage, and it provides a graphical
user interface that facilitates its application for users who do
not have programming experience.

Categories and Subject Descriptors: H.2.8 [Database
applications|: Data mining

General Terms: Algorithms, Experimentation

Keywords: data linkage, database matching, data stan-
dardisation, open source software, Python, GUI.

1. INTRODUCTION

A crucial requirement for successful data mining projects in
many application areas is the linking of records from several
heterogeneous databases [10; 23]. Related to record linkage
is the deduplication of a single database [16]. Record linkage
and deduplication are aimed at matching all records that
relate to the same real-world entities. These entities can, for
example, be patients, customers, tax payers, travellers, or
even businesses, publications, patents, or genome sequences.
Record linkage and deduplication can be used to improve
data quality and integrity, to allow re-use of existing data
for new studies, to enable data analysis and mining at levels
of details not otherwise possible, and to reduce costs and
efforts in data acquisition.

In the health sector, for example, linked data can contain
information that is required to improve health policies, and
that traditionally has been collected with time consuming
and expensive survey methods. Linked data can also help

in health surveillance systems to enrich data that is used
for detection of suspicious patterns, such as outbreaks of
contagious diseases. Businesses routinely deduplicate and
link their databases to compile mailing lists for customer
analytics purposes, while taxation offices and departments
of social security use record linkage to identify people who
register for benefits multiple times, or who work and col-
lect unemployment money at the same time. Another area
where record linkage has gained increased interest in recent
times is crime and terror detection. Security agencies and
crime investigators increasingly rely on the ability to quickly
bring up files for a particular individual, which may help to
prevent crimes or terrorism by early intervention.

A variety of commercial record linkage and deduplication
systems are available. From a user’s perspective, the vast
majority of these systems are a ‘black box’, because the
details of the technology implemented within the linkage
engine of these systems are normally not accessible. Addi-
tionally, many of these systems are specialised to a certain
domain, for example the linking of business data, or the
cleaning or deduplication of customer mailing lists.

For many applications, the record linkage or deduplication
process is quite complex, because it involves data from het-
erogeneous sources, possibly from different domains and col-
lected at different points in time. Therefore, a significant
amount of customisation or additional programming is com-
monly required before a commercial linkage system can be
successfully used for a certain application. A record linkage
application is often limited by the functionality offered by
the commercial linkage system employed.

Record linkage is a complex process that requires the user to
understand, up to a certain degree, various technical details.
For example, it is important that a user appreciates how
approximate string comparison functions work on name and
address values, because they will significantly influence the
quality of the final matched data. Similarly, understanding
the trade-offs of using certain record fields (attributes) in
the linkage process, or setting parameters to certain values,
is crucial. On one hand a specific parameter choice might
result in poor linkage quality, while on the other hand a
different choice might result in too many records pairs being
compared, thus making a linkage not feasible.

Several smaller record linkage systems are available for free
or at affordable prices. However, they are commonly limited
in their ability to deal with different types of data, only con-
tain a limited amount of functionality (for example imple-
ment only a small number of commonly used string compar-
ison functions), or they can only link small data sets. Large-

Volume 11, Issue 1

Page 39

SIGKDD Explorations

Database A

Database B

Possible

\A

matches matches

e

Figure 1: The general record linkage process. The blocking
/ indexing step generates candidate record pairs, and the
output of the record pair comparison step are weight vectors
that contain numerical similarity values.

Matches

scale record linkage and deduplication systems, on the other
hand, are usually very expensive, require powerful comput-
ing and large storage environments, and are therefore only
affordable by large organisations.

It is important that users of record linkage systems, as well
as researchers working in this area, have access to free (or
at least affordable) tools that allow them to learn about
and experiment with record linkage techniques. Such tools
should include both traditional and novel techniques (to al-
low users to understand their advantages and limitations),
they should be flexible and contain a variety of different
linkage techniques, and they should allow a multitude of
configuration options for a user to conduct a variety of ex-
perimental linkages. To facilitate this, the source code of
the linkage engine of such systems should be available for
inspection, modification and improvement. On the other
hand, because many users of record linkage systems have
limited programming experience, a graphical user interface
should be provided to facilitate the use of record linkage
techniques without the need of any programming.

This lack of flexible record linkage systems, that allow access
to their source code and include a variety of linkage tech-
niques, is addressed by the Febrl (Freely Extensible Biomed-
ical Record Linkage) system presented in this paper. To the
best of the author’s knowledge, Febrl is the only freely avail-
able data cleaning, deduplication and record linkage system
with a graphical user interface.

This paper is an extended version of a demonstration paper
presented at ACM KDD’08 [7]. In the following Section 2,
a general overview of the record linkage process is provided.
The background of the Febrl project is given in Section 3,
and in Section 4 the structure and functionality of the Febrl
software is explained in detail, and illustrated with screen-
shots of an example record linkage project. Then, in Sec-
tion 5, the results of a recently conducted survey of Febrl
users is discussed. The paper is concluded in Section 6 with
an outlook to future development plans for Febrl.

2. THE RECORD LINKAGE PROCESS

As shown in Figure 1, the linkage process consists of five ma-
jor steps: cleaning and standardisation, indexing / blocking,
comparison, classification, and evaluation / review.

Record A: [‘dr’, ‘peter’, ‘paul’, ‘miller’]
Record B: [‘mr’, ‘pete’, € ‘miller’]
Weight vector: [0.5, 0.9, 0.0, 1.0]

Figure 2: Example weight vector generated when comparing
records A and B.

Because common unique entity identifiers (or keys) are often
not available in the databases to be linked or deduplicated,
the linkage process is usually based on the available record
fields (attributes), which in many cases contain personal de-
tails such as names, addresses, and dates of birth. The val-
ues in these fields, however, often contain noisy, incomplete
and incorrectly formatted information. A lack of good qual-
ity data can be one of the biggest obstacles to successful
record linkage and deduplication [13], because records might
not be compared with each other if they contain incorrect
or missing information. Data cleaning and standardisation
are therefore an important first step for successful record
linkage and deduplication. Their objective is the conversion
of the raw input data into well defined, consistent formats;
and the resolution of inconsistencies in the way information
is represented and encoded [12].

When linking two databases, potentially each record in one
database needs to be compared with all records in the other
database, because there is no way to know prior to the
comparison step if two records are matching or not. This
comparison process is therefore of quadratic complexity [10].
The maximum number of true matches, however, cannot be
larger than the number of records in the smaller of the two
databases to be linked. Similarly, when deduplicating a sin-
gle database, each record potentially needs to be compared
with all other records, while the maximum number of poten-
tial duplicates is always smaller than the number of records
in a database. To improve the scalability of the linkage
process, the potentially very large number of record pairs
that are to be compared has to be reduced. This can be ac-
complished through some form of indexing (called ‘blocking’
in record linkage [2]), that splits the databases into blocks
(or clusters). Only records that are in the same block are
compared with each other. For example, if a postcode field
is used for blocking, then only records that have the same
postcode value are compared with each other.

The candidate pairs generated in the blocking step are com-
pared using comparison functions appropriate to the content
of the record fields (attributes). Approximate string com-
parison functions, which take variations and typographical
errors into account, are commonly used on name and ad-
dress fields [3; 14], while comparison functions specific for
date, age, and numerical values are used for fields that con-
tain such information. Each comparison function returns a
numerical similarity value, often called a matching weight,
that is commonly normalised, such that 1 corresponds to
two exactly matching values, and 0 to two completely dif-
ferent values. Two values that are somewhat similar (such
as the two name strings ‘Gail’ and ‘Gayle’) will result in a
similarity value somewhere between 0 and 1. Several fields
of each candidate record pair are normally compared, and a
weight vector is formed that contains all matching weights
calculated for a record pair. Figure 2 shows two example
records (made of title, given name, middle name and sur-
name fields) and a corresponding weight vector.

Volume 11, Issue 1

Page 40

SIGKDD Explorations

Table 1: Release history of the Febrl software and version highlights.

[Version | Release date | Highlights

0.1 5 Sep 2002

Data cleaning and standardisation modules only.

0.2 14 Apr 2003
and deduplication.
0.2.1 25 Jun 2003
0.2.2 | 20 Nov 2003

Complete object-oriented re-design, included modules for probabilistic record linkage

Various improvements, and added several new features in existing modules.
Bug-fix release of 0.2.1, no new features were added.

0.3 6 Apr 2005

Added a geocode matching module and various new features in several existing modules,
and updated all modules to Python version 2.4.

0.4 7 Nov 2007

0.4.01 | 13 Dec 2007
0.4.02 | 15 Apr 2008 | Bug-fix release of 0.4.01.
0.4.1 | 16 Dec 2008

Included a GUI, completely re-designed module structure, added many new features,
and updated all modules to Python version 2.5.
Bug-fix release of 0.4. A tutorial chapter was added to the manual.

Included a new, much improved, data generator module [11].

Based on these weight vectors, the next step in the linkage
process is to classify the compared candidate record pairs
into matches, non-matches, and possible matches (depend-
ing upon the decision model used) [10; 19]. Record pairs
that were removed in the blocking step are classified as non-
matches without being compared explicitly. Various clas-
sification techniques have been developed in the past four
decades, ranging from basic threshold-based [17; 23] to com-
plex machine learning based approaches [5; 6; 15].

The final step in the linkage process is to evaluate the quality
of the generated matches and non-matches. A variety of
evaluation measures can be used for this, however, due to
the normally imbalanced distribution of matches versus non-
matches, care needs to be taken to prevent over-optimistic
accuracy results [10]. If a classification technique has been
used that classified record pairs as possible matches [23],
then a manual clerical review step is required to decide the
final linkage status of these record pairs.

3. FEBRL PROJECT BACKGROUND

The Febrl software has been developed since early 2002 as
part of a collaborative research project conduced by the Aus-
tralian National University in Canberra and the New South
Wales Department of Health in Sydney, Australia. The ob-
jectives of this project are to develop novel techniques for
improved data cleaning and standardisation, deduplication
and record linkage. While the focus of this research is on the
cleaning and linking of health related data, the techniques
developed and implemented in Febrl are general enough to
be applicable to data from a variety of other domains.
Since its first publication in early September 2002, the Febrl
software has been hosted on the Sourceforge. Net open source
software repository, and it is available from:

https://sourceforge.net/projects/febrl/

Febrl is written in the Python' programming language. Py-
thon provides an ideal platform for rapid prototype develop-
ment. It includes data structures like sets, lists and associa-
tive arrays (called ‘dictionaries’) that allow efficient handling
of very large data sets. It also contains many modules that
offer a range of functionalities, including string handling,
database access, Web programming, numerical capabilities,
and GUI (graphical user interface) development.

"Mttp://www.python.org

500

450 - 1
400 - 1
350 | :
300 | 1

2223322233
2% %%%%%%%
o o o o = = [3) <3} ©

Figure 3: Monthly Febrl download numbers from the

Sourceforge. Net repository. The total number of downloads
on 8th May 2009 was 13,234.

250
200
150

100 |
50 ‘

0 I|| 1

Download numbers

T

V()OY’ \,30

% 2 3
%% %
[CEERC S

Febrl is published under an open source software licence that
is based on the Mozilla Public License 1.12. This license
allows maximum flexibility for users by permitting them to
integrate Febrl into other, non open source, software. This
is not possible with other open source licenses, such as the
GNU General Public License. An overview of the release
history of the Febrl software can be seen in Table 1. To the
best of the author’s knowledge, Febrl is the only open source
software that includes a GUI and allows data cleaning and
standardisation, deduplication and record linkage.

As can be seen in Figure 3, the download numbers per month
have significantly increased since the initial release of Febrl.
Note that downloads before April 2003 are not available due
to a change in the Sourceforge. Net statistics system at that
time. Some of the outliers (peak download numbers) co-
incide with the release of major new Febrl versions (0.3 in
April 2005 and 0.4 in November 2007), while others (like the
peaks in June 2005 and November 2008) are not correlated
to any specific event (such as publications or presentations)
that increased the publicity of Febrl.

Due to the availability of its source code, Febrl is suitable for
the rapid development, implementation, and testing of novel
data cleaning, record linkage and deduplication techniques,

2For details see: http://www.opensource.org/licenses

Volume 11, Issue 1

Page 41

SIGKDD Explorations

Febrl - (None) |

Febrl - (None)*

Ele Tools Help

{ 1 rE) standardisation @ Deduplication
@ [= | N
{Execute! New I Save Quit O Linkage
Data ‘Logl
First data set type: @ CSV (O coL O TAB | Missing va\ues:‘ |
Flename: | (None) B3| pelimiter: [, | I Use headerline W1 Strip fields

Record \dent\ﬁerﬁe\d:‘ (None) © ‘

Figure 4: Initial Febrl user interface after start-up.

as well as for both new and experienced users to learn about,
and experiment with such techniques. The current Febrl
version includes the source code, several example data sets
(some taken from the SecondString toolkit?), and a data set
generator [11]. The documentation contains a set of papers
that describe the techniques implemented in Febrl, and a
manual that includes several step-by-step tutorials.

4. STRUCTURE AND FUNCTIONALITY

Compared to earlier versions, Febrl since its 0.4 release in-
cludes a graphical user interface (GUI), which facilitates the
application of Febrl for users who do not have any Python
programming experience. Feedback received from users since
2002 indicated that a GUI was one of the most desired fea-
tures for Febrl. The GUI was developed using the PyGTK*
library and the Glade® toolkit.

In the following, the structure of the Febrl GUI and its func-
tionality are described in detail, and illustrated using a series
of screen-shots that show an example linkage of the ‘Census’
data set, which was taken from the SecondString repository
and is provided with the Febrl software. This small data set
is made of 841 records in total. It is split into two sub-sets
with 449 and 392 records, respectively, and contains arti-
ficial census data made of name and address fields. Each
record includes an identifier field, which has the same value
if two or more records from the two data sets refer to the
same person. Record pairs that have the same identifier
value therefore correspond to true matches, while pairs that
have different identifier values are non-matches. This allows
measuring the accuracy of a linkage [10].

The main Febrl GUI after start-up is shown in Figure 4. The
basic idea of the GUI is to have a ‘tabbed’ window, similar
to tabs in modern Web browsers. This follows the approach
taken by the Rattle open source data mining tool [22]. There
is one tab for each of the major steps in the record linkage
process. On each tab, the user can set a variety of parame-
ter settings for the corresponding step of the linkage process.
A click on the ‘Execute’ button will validate the chosen set-
tings, and if any of them are invalid an error window will ap-
pear that describes which setting has to be corrected. Once

*http://secondstring.sourceforge.net
“http://wuw.pygtk.org
*http://glade.gnome.org

Ele Tools Help

a [=2 4

Execute Mew PEr Save Quit
Data ‘Exp\ure |Index ' Compare iLug ‘

First data set type: 0 €SV O COL @ TAB ©

) standardisation) Deduplication

@ Linkage

Missing values:
Filenarme: |[7] censusTexts... I8 | [Use headerline &1 Strip fields

Record \dennﬁerhe\d:‘ (None) < |

SOURCE IDENTIFIER SURNAME GIVENNAME INITIALS ZIPCODE SUBURB i

A ID4447124106922810001 ANDERSON 4848 BASSWOOD

A ID4447124106922810003 ANDERSON 4848 BASSWOOD I
A ID4447124106922810004 ANDERSON 4848 BASSWOOD

A ID4447124106922810002 ANDERSON 4848 BASSWOOD ‘
A ID4447124106881610001 AQUENDO CLARA J 666 STARKEY E

Second data set type: O CSV O COL @ TAB | Missing values: |

Flenarme: | 7] censusTexts.., || C1 Use headerline & Strip fields

Record \dant\ﬁerhs\d:! (None) < |
SOURCE IDENTIFIER ;URNAME GIVENNAME INITIALS ZIPCODE SUBURB
B ID444611561 AHREWS MARITZA A 345 7187 E
B ID444611563 AHREWS MARIANNA B 345 7157 I
B ID4447124106879010001 BENETAS LENARD A 660 STARKEY
B ID4447124106879010003 BENETAS SAMMY R 660 STARKEY ‘
B ID4447124106879010002 BENETAS DOLORES R 660 STARKEY

Generated Febrl Python code for data set initialisation (see Log page for generated code)

Figure 5: ‘Data’ tab for a record linkage project after both
‘Census’ input data sets have been initialised and validated.

all settings on a tab are valid, Febrl Python code for the
corresponding step in the linkage process will be generated
and shown in the ‘Log’ tab. This is the code that will be
executed when the actual standardisation, deduplication or
linkage is being started on the ‘Output/Run’ tab, as will be
described in Section 4.7.

Initially, the only two tabs visible are ‘Data’ and ‘Log’.
Other tabs will appear once the input data set has, or sets
have, been initialised. In the middle top part of the Febrl
GUI, the user can select the type of project she or he wants
to conduct: the ‘Standardisation’ of one data set, the ‘Dedu-
plication’ of one data set, or the ‘Linkage’ of two data sets.
All tabs will be described in more detail and illustrated with
corresponding screen-shots in the following sections.

4.1 Input Data Initialisation

When a user selects the type of project to be conducted,
the ‘Data’ tab will show either one or two input data set
areas. The user now needs to select the file name(s) of the
input data set(s) to be used. So far, Febrl supports three
types of text file formats: CSV (comma separated values),
TAB (tabulator separated values), and COL (column ori-
ented values with fixed-width fields). Access to databases is
of the many features left for future work.

Once a file has been selected, the content of its first few
lines will be shown. This allows a user to check the selected
parameter settings (such as using a header line, stripping
whitespaces from values, setting missing values, and using
a record identifier field), or modify them if required. When
satisfied, a click on ‘Execute’ will validate the chosen set-
tings, and provide an error window if any is not valid.

As can be seen in the top part of Figure 5 for the ‘Census’
data sets, once the input data has been initialised and vali-
dated, additional tabs will become visible. The ‘Explore’ tab
will become visible in any case, other visible tabs however
depend upon the selected project type.

Volume 11, Issue 1

Page 42

SIGKDD Explorations

Feb = (None)*

File Tools Help
[= 4
Execute New ; Save Quit

| Data Explore |Index | Compare Log |

Select data set to explore: I First Second
Summary of field statistics

© standardisation C Deduplication

@ Linkage

.............. ﬁ

[[]iUse sample:{10

Analyse: @ Values O Words

B3]

Unique Missing Frequencies

Fiold names values values mvrg stdoev Field type
SOURCE 1 Q 392.00 0.00 Dnly letters
IDENTIFIER 381 0 P | 0.24 Digits and letters
SURNAME 163 o} 2.40 1.24 Various

GI VENNAME 3532 Q Sdsd: 0.47 Various

INITIALS 24 91 12.54 11.38 Dnly letters
ZIPCODE 137 3 2.84 1.97 Only digits
SUBURE 33 o] 11.88 12.38 Various

Field quantiles

Field names
SOURCE [302, 302, 392, 392, 302, 392, 392]
IDENTIFIER fy o5 29 15 35 25 81
SURNAME [1, 1, 1.50, 2, 3, 5, 6]
GLVENNAME [1, 1, 1,1, 1,2 7]
INITIALS [1, 1.15, 4.50, 8, 17, 36.10, 40]
ZIPCODE [1, 1, 2, 2, 4, 7, 12]
SUBURE [1, 2, 3, 7, 18, 30.20, &2]
I 1)
Finished reading a 100.0% sample of 392 records in 0.02 see

T

Figure 6: Data exploration tab showing summary analysis
of record fields (attributes, columns).

4.2 Data Exploration

The ‘Explore’ tab allows a user to conduct basic data ex-
ploration of the input data set(s) in order to get a better
understanding of the content of the selected data. The in-
put files will be read and a variety of statistics collected for
each field (attribute). This includes the number of differ-
ent values, the alphabetically smallest and largest values,
the most and least frequent values, the quantiles distribu-
tion of field values, the number of records that have missing
(or empty) values in each field, as well as a guess of the
type of each field (if it contains only digits, only letters, or
is of mixed type). It is possible to sample a percentage of
records to be analysed in order to speed-up the exploration
of large data sets. Figure 6 shows a summary table of the
information collected from one of the ‘Census’ data sets.

4.3 Data Cleaning and Standardisation

Currently, the cleaning and standardisation of a data set us-
ing the Febrl GUI is done separately from a record linkage
or deduplication project, rather than as a first step in the
linkage process (as shown in Figure 1). A user can clean and
standardise her or his data set(s), and they are then written
into new file(s), which in turn can be used in a dedupli-
cation or record linkage project. When a user selects the
‘Standardisation’ project type, and has initialised a data set
on the ‘Data’ page, she or he can define one or more com-
ponent standardisers on the ‘Standardise’ page, as shown in
Figure 7. Currently, Febrl contains standardisers for names,
addresses, dates, and telephone numbers.

The standardisation for simple names (those made of one
given-name and one surname only) is done by applying a
rule-based approach, while for more complex names a prob-
abilistic hidden Markov model (HMM) based approach [12]
is used. The standardisation of addresses is fully based on a
HMM approach [8]. The training of HMMs at the moment
needs to be done outside of the Febrl GUI using separate
Febrl programs. The standardisation of dates, such as dates

Febrl - (None)*

fle Tools Help
2] =
Execute New [Save Quit

| pata | Explore | Standardise | Log |

Date standardiser:

ﬂ @ standardisation O Deduplication
O Linkage

Inpt fields: Parameters: output fields:
[date_of bith 5| Field separator:] Day: [dayl |
TCreckworToRog Month: [month |
| add new input ield | Parse formats: (%d %m %Y, %d %8 %Y, vear: [year1 |
Pivat year: [08]
Phone number standardiser:
Input fields: Parameters; Output fields:
| phone_number 2 ‘ Field separator: | Country code: [country_code1 |
= Check word spiling sty e E—
Add newinput fald Corraction st fie: {None) | Area codei [area_codel]
g el E (None) | Number: {numberl]
| Add tag table | Extension: | extension1 |

Default country: |Austraha s

Add new component standardiser fori |Dates| [Phone numbers| [Names| [Addresses| | Delete last component standardiser

Generated Febrl Python code for data set initialisation (see Log page for generated code).

Figure 7: Example date and telephone number standardisers
(for a synthetic Febrl data set).

of birth, is based on a list of parsing format strings that
provide the most likely date formats that are expected in a
record field. Telephone numbers are standardised using an
approach that combines look-up tables and rules.

As can be seen in Figure 7, each standardiser requires the
user to select one or several input fields from the input data
set (shown on the left side in the GUI), which are to be
cleaned and standardised into a number of output fields (six
for names, 27 for addresses, three for dates, and five for
phone numbers), as shown on the right side in the GUI. Each
component standardiser also requires various parameters to
be set, as shown in the middle column of the GUI.

It is possible to define more than one standardiser for each
component type. For example, for a health data set, one
date standardiser might be used for dates of birth and an-
other for hospital admission dates. Once all parameter set-
tings for the defined component standardisers are initialised,
they can be validated with a click on ‘Execute’. On the ‘Out-
put/Run’ tab (which will be described in Section 4.7), the
name of the standardised output file needs to be provided,
and then a standardisation project can be started by clicking
on the ‘Execute’ button.

4.4 Indexing (Blocking) Definition

Blocking or indexing is applied in the record linkage pro-
cess to reduce the number of record pair comparisons to be
conducted [2]. The ‘Index’ tab allows the user to select one
of seven possible indexing methods, as shown in Figure 9
(a). The most simple approach is the ‘Fulllndex’, which will
compare all record pairs and thus has a quadratic complexity
(making it not scalable!). The standard ‘Blockinglndex’ [2]
approach, as implemented in most traditional record link-
age systems, inserts each record into a single block, and
only compares records within the same block.

Febrl also contains five recently developed experimental in-
dexing methods: ‘Sortinglndex’, which is based on the sorted
neighbourhood approach [20]; ‘QGramlndex’, which uses
sub-strings of length ¢ to improve approximate matching [2];
‘Canopylndex’, which is based on overlapping canopy clus-
tering and uses the TF-IDF or Jaccard similarity to cheaply
calculate the similarities between records [15]; ‘StringMapIn-
dex’, which maps the index key values (more on this below)

Volume 11, Issue 1

Page 43

SIGKDD Explorations

Febrl- (None)”

Ele Toels Help

@ [H o

Execute New I Save Quit

Data Explore | Index | Cornpare Log |

Indexing method:| Blockingindex | |

©) Standardisation () Deduplication

@ Linkage

Separator string:| |¥ skip mlssmg}

¥ Use BigMatch indexing

Index 1:

Field name A:‘ SURNAME |2 I Field name B! ‘ SURNAME & ‘ Maxirnum length: ‘ | [] sort words

Encodmgfunct\un:l Double-Metaphone | & ‘ Encoding function parameters:‘

Index 2:

Field name A:! ZIPCODE < | Field name B: ‘ ZIPCODE < ‘ Maximum length: ‘ | [sort words

Encoding functmn:} None b} ‘ Encoding function paramaters:‘

Field name A‘l GIVENNAME & | Field name B: ‘ GIVENNAME & | Maximum length: [Sort words

¢ | Encoding function parameters:[3

‘Add new index definition | ‘Delete last index deﬁmt\unl

Encoding function] Soundex

‘Add new mdsx{ ‘De\ete last mdax‘

a m |

Generated Febrl Python code for indexing (see Log page for generated code),

(a) Indexing

(c) Comparison

(d) Classification

Figure 8: Example indexing definition using the ‘BlockingIn-
dex’ method and two index definitions.

into a multi-dimensional space and performs canopy cluster-
ing on the objects in this space [21]; and ‘SuffixArrayIndex’,
which generates suffix strings of the index key values and
inserts them into a sorted array, with the aim to enable
efficient access to these values during the record pair com-
parison step [1].

When conducting a linkage and using one of the indexing
methods ‘BlockingIndex’;, ‘SortingIndex’ or ‘QGramIndex’,
the BigMatch [24] approach can be activated in the GUI (as
can be seen in Figure 8). With this approach, the smaller of
the two input data sets is loaded and an index data struc-
ture is built in main memory. It will include all record fields
required in the comparison step. Each record of the larger
input data set is then read, its index key values are ex-
tracted, all records in the same block from the smaller data
set are retrieved from the main memory index, and they are
compared with the current record from the larger data set.
This approach performs only a single pass over the large
data set and does not require indexing, sorting or storing
of any of its records. This can significantly reduce the run
time if two data sets of different sizes are to be linked.
Similarly, for the deduplication of a single data set, the in-
dexing step can be performed in an overlapping fashion with
the field comparison step. An inverted index data structure
is built in memory while records are read from the input
data set, and their index key values are extracted and in-
serted into this index. At the same time, the current record
is compared with all previously read and indexed records
that have the same index key value. This approach can be
selected by ticking the ‘Use Dedup indexing’ box.

Once an indexing method has been selected, the actual index
keys have to be defined and their various parameters have
to be set. Index keys consist of one field (attribute) or a
concatenation of several fields. Phonetic encoding functions
can be used to group similar sounding values into the same
block. The encoding functions implemented in Febrl 3] are
listed in Figure 9 (b).

Figure 8 shows an example Febrl ‘Index’ tab for the ‘Census’
data sets. As can be seen, a user has selected the standard
‘BlockingIndex’ method and has defined two index keys.

methods. methods. methods.
Fullindex Age FellegiSunter
Blockingindex Bag-Dist optimalThreshold

Sortingindex Compression KMeans
QGramindex Dam-Le-Edit-Dist FarthestFirst
Canopylndex Date SuppVecMachine
g Edit-Dist TwoStep
StringMaplindex
y Editex
SuffixArrayindex
Jaro
Key-Diff

Long-Common-Seq
MNum-Abs
Num-Perc
Onto-LCS

Pos-Q-Gram

(b) Encoding

Q-Gram
methods.
S-Gram
Double-Metaphone Seqg-Match

Fuzzy-Soundex Smith-Water-Dist

fledisolndex Str-Contains

NYSIIS

Str-Encode
MNone

Str-Exact
Phonex

Str-Truncate
Phonix

Syll-Align-Dist
Soundex 2 2

Time
Substring

Token-Set

Winkler

Figure 9: Available methods for indexing (a), phonetic en-
coding (b), field comparison (c¢), and weight vector classifi-
cation (d). These are the pull-down menus from the corre-
sponding Febrl GUI tabs.

The first will generate key values from the ‘SURNAME'’ field
encoded with the Double-Metaphone algorithm [3]. The sec-
ond index key will be generated by concatenating values
from the ‘ZIPCODE’ field with the first three characters of
the Soundex [3] encoded ‘GIVENNAME? field. Records that
have the same value in either of these two index key defini-
tions will be inserted into the same block and compared in
the record pair comparison step.

4.5 Field Comparison Functions

On the ‘Comparison’ tab, the functions used to compare the
field values of record pairs can be selected. Febrl contains
26 similarity functions, including twenty approximate string
comparators [3], as listed in Figure 9 (¢). Every comparison
requires the user to select a comparison function, as well as
the two fields that will be used in this comparison. While
normally fields with the same content will be compared (for
example surnames with surnames), it is feasible in Febrl to
compare different fields, for example to accommodate for
swapped given- and surname values. While most of the
comparison functions implemented in Febrl are variations
of approximate string comparisons [3; 14], special functions
are available that allow the user to compare fields that con-
tain date, age, time or numerical values.

Volume 11, Issue 1

Page 44

SIGKDD Explorations

Febrl - (None)*

Fle Tools Help

L\ H a

Execute New [Save Quit

| pata Explere Index | Compare | classify Log |

Field comparison function| Winkler 2]

O Standardisation () Deduplication

@ Linkage

¢ ‘ Field name B:‘ SURNAME Maximum cache siz|

el | [] Cache comparisons
| Agreeing value weight: 1.0 | bisagreeing value weight{ 0.0

| & Check similar characters ¥ Check same initial characters & Check long strings

Field name A:l SURNAME

Missing value weight: 0.0

Threshold:0.0

Field comparison function{ Q-Gram gl

Field name A:! SUBURB 2 ‘ Field name B:l SUBURE ol | W Cache comparisons Maximum cache siz|

Missing value weighti[0.0 | Agresing value weighti 1.0 | Disagreeing value weight 0.0

Threshold: 0.0

Field comparisan functlun:l Key-Diff <

Field name A:| ZIPCODE

| Lengthof @i[2 | common divisor| Average ¢ | @ Padded

< | Field name B: ZIPCODE |2 | L1 Cache comparisons ~ Maximu cache siz

Febrl = (None)*
fle Tools Help
&2 =]
Execute New Iz Save Quit
|pata | Explore |index | compare! Classify | output/un | Log |

Weight vector classification method;| TwoStep

ﬂ) standardisation ' Deduplication

@ Linkage

match comparison values{ 10 | Match method ‘ Nearest | & ‘ Selection nearest{100 | Select unique weight vectors
Non-match commparison value{0.0 | Non-match method| Nearest | ¢ | Selection nearest{360 | &I Select unique weight vectors

Random selection method: (one) < |

Step two classification method:| SYM 2 | Kemel type:| ReF ¢ | cf10 |

Generated Febrl Python code for classification (see Log page for generated code)

Missing value weight: 0.0
Maximum key d\fference:! 1

| Add new comparison function |

| Agreeing value weight: 1.0 | Disagreeing value weight{ 0.0

| Delete last comparisen function|

[I >
Generated Febrl Python code for comparisons (see Log page for generated code).

Figure 10: An example of three field comparison function
definitions.

All comparison functions return a raw similarity value be-
tween 0 (total dissimilarity) and 1 (exact match). There
is no limit to the number of comparison functions that can
be initialised. Because similarity functions can be computa-
tionally quite expensive, especially when longer strings are
compared, it is possible to cache the compared field values
together with their similarity value. This will speed-up the
comparison step for all subsequent comparisons of the same
two field values. Caching is especially useful for fields that
contain a small number of longer string values, such as sub-
urb, business or company names, or article titles.

The example comparison functions shown in Figure 10 ap-
ply the Winkler [3] approximate string comparator on the
‘SURNAME'’ fields, a g-gram based approximate string com-
parator on the ‘SUBURB?’ fields, and the key-difference com-
parison function (which counts the number of different char-
acters) on the ‘ZIPCODE’ fields. For each compared record
pair, a weight vector with three matching weights will be
generated to be used to classify that pair.

4.6 Weight Vector Classification

The last major step that needs to be initialised (before a
linkage or deduplication can be started) is the selection of
the method used to classify the weight vectors generated in
the comparison step. Febrl currently offers six classification
techniques, as listed in Figure 9 (d).

With the ‘FellegiSunter’ classifier, all matching weights in a
weight vector are summed, and two manually set thresholds
are used to classify record pairs [17]. Those pairs that have
a summed weight above the upper threshold are classified
as matches, pairs with a matching weight below the lower
threshold as non-matches, and pairs with a matching weight
between the two thresholds as possible matches.

The ‘OptimalThreshold’ classifier requires the true match
status of all compared record pairs to be known (i.e. it is
a supervised classifier). Then, an optimal threshold can be
calculated based on the summed weight vectors. Another su-
pervised classifier is ‘SuppVecMachine’, which implements a
support vector machine (SVM). Several SVM parameters,

Figure 11: Example ‘Two-Step’ weight vector classifier.

including the kernel function used, can be set in the GUI.
For both supervised classifiers, the match status of record
pairs is determined through an exact comparison of one of
the fields in the data set(s). For example, the ‘Census’ data
sets contain the IDENTIFIER’ field. For two records that
refer to the same person, an exact comparison on this field
will result in a similarity value of 1, because they will have
the same identifier value. On the other hand, all compar-
isons between different people (that have different identifier
values) will result in a similarity value of 0. These similarity
values can then be used as class indicator variable, which
allows supervised classification.

The ‘FarthestFirst’ [18] and ‘KMeans’ classifiers are both
unsupervised clustering approaches. They cluster weight
vectors into matches and non-matches. Several methods can
be selected for centroid initialisation, and different distance
measures are available. It is possible to sample the weight
vectors in order to reduce the computational requirements
of the clustering process. Both classifiers also allow the se-
lection of a ‘fuzzy region’, which will classify the record pairs
in the area half-way between the match and non-match cen-
troids as possible matches, as described in [19].

Finally, the unsupervised ‘TwoStep’ classifier, shown in Fig-
ure 11, is based on the idea of selecting in a first step weight
vectors that with high likelihood correspond to true matches
and true non-matches, and to use these vectors in a second
step as training examples for a binary classifier [4; 5; 6].
Several methods are implemented in Febrl on how to select
the training examples in the first step, and for the second
step k-means clustering or a SVM classifier can be selected.
Experiments have shown that in certain cases this unsuper-
vised two-step approach can achieve linkage quality results
almost as good as supervised classification [4].

4.7 Output Files and Running a Project

On the ‘Output/Run’ tab, a user can select various settings
of how the weight vectors, the match status, the matched
record pairs, and the matched files can be saved into output
files. It also allows setting several other parameters related
to running a project, such as setting a length filter (i.e. re-
moving candidate record pairs if their lengths, as concate-
nated strings, differs by at least a certain percentage value),
or setting a cut-off threshold to reduce the number of weight
vectors that are stored in memory.

Volume 11, Issue 1

Page 45

SIGKDD Explorations

Febrl - (Nonej*

fle Tools Help

e H

Execute New. Save Quit

O standardisation O Deduplication

@ Linkage

Data | Explore Index | Compare Classify| Output/Run | Evaluate |Log |

Progress report percentage: | 10

Length filtering percertage: [None
Weight vector cut-off threshold: [None

Save weight vector fils ‘census—weighlrvectars csv|

[] Save histogram file

save match status file: | census-match-status

W Save match data set(s)

First data set: |censusTexlSegmemedArmalch tab‘ Match identifier field name !matchiwd

second data set] censusTextSegmenteds-match.tab | Mateh identifier field name:match_id

Febrl - (None)*

Fle Tools Help
2 H #
E New Save Quit r
Data \Explore Index Compare Classify Output/Run | Evaluate |Log |

Summed matching weights histogram

) standardisation O Deduplication

@ Linkage

C—= Matches
— N t

Counts

[_pl|

Linkage complexity

- =

q - B
0g 0.5 10 15 20
Matrhine wairht

Linkage quality
Accuracy: ---
Precision: -

Reeall:
Femeasure: ---

Reduction ratio; 0.994
Pais completeness; ---
Pairs quality: ---

Calculated quality and complexity measures.

Calculated quality and complexity measures.

Figure 12: ‘Output/Run’ tab with options for running a
linkage project and writing of output files.

Figure 12 shows an example ‘Output/Run’ tab for the ‘Cen-
sus’ linkage project. With a click on ‘Execute’, the Febrl
GUI will ask the user if the current project should be saved
as a Febrl Python file, that can later be execute indepen-
dently from the GUI; and if the project should be run within
the GUI now. Once started, a small window will appear that
shows a progress bar as the project is being run.

4.8 Evaluation and Clerical Review

As can be seen in Figure 13, the ‘Evaluate’ page visualises
the results of a deduplication or linkage as a histogram of
the summed matching weights of the compared record pairs.
If the true match and non-match status of record pairs is
available (as discussed in Section 4.6), the quality of the
conducted linkage or deduplication will be shown using the
measurements accuracy, precision, recall and F-measure (or
F-score) [10]. Additional measures that show the complexity
of a deduplication or linkage project are the reduction ratio,
pairs completeness and pairs quality [10]. They are based on
the number of compared record pairs, the total number of
possible pairs (i.e. if each record would have been compared
with all others), and if these pairs are true matches or not.

4.9 LogTab

This tab shows the Febrl Python code generated when click-
ing ‘Execute’ on other GUI tabs. An example is shown in
Figure 14, where the code generated for a k-means record
pair classifier can be seen. This allows an experienced Febrl
user to verify the correctness of the generated code, and
also enables copying pieces of code into other Febrl Python
programs outside of the GUI.

5. USER EXPERIENCES

In order to get a feel of how and by whom Febrl is being used,
in early 2009 the author sent out an e-mail questionnaire to
forty Febrl users that are currently registered on the Febrl
Sourceforge. Net mailing list, and to an additional 37 users
who had e-mail contact with the author in the past two
years. Of these 77 e-mails, eight were bounced with an error
message, mostly because an e-mail did not exist anymore.
Of the 69 e-mails sent successfully, 22 users responded to
the questionnaire, corresponding to a 32% response rate.

Figure 13: Evaluation tab showing the matching weight his-
togram and quality and complexity measures for a linkage.

Of the respondents, 27% indicated they worked in industry,
18% in government, and the remaining 55% in academia.
A large variety of application areas, were the respondents
worked in, was given. Most common were the health sec-
tor (four respondents), computer science research and the
census (three respondents each), and business (two respon-
dents). Other areas included demographics, security, tele-
communication, data warehousing and social research.

Table 2: Years when users became aware of Febrl.
2002 | 2003 | 2004 | 2005 | 2006 | 2007 2008

4.6% | 13.7% | 9% | 4.6% | 9% | 18.2% | 40.9%

The year when the respondents became aware of Febrl is
shown in Table 2. Fifteen respondents (77%) indicated that
they have been using Febrl since they became aware of it,
however only nine (40.9%) indicated that they are currently
using it. The roles in which Febrl is being used is listed
in Table 3. Note that a respondent could select several of
these roles. As can be seen, learning about record linkage
and experimental linkages were the two most common roles
Febrl is being used for. Interestingly, more than a quarter
of all respondents replied that they are, or were, using Febrl
within production linkage projects. Exactly half of the re-
spondents also indicated that they only used some of Febrl’s
functionality (such as its string comparison or phonetic en-
coding modules, or the Febrl data generator), for example
in their research.

Table 3: Role in which Febrl is being used.

Just playing around with it 54.5%
Experimental linkages 59.1%
Production linkages 27.3%
Data cleaning only 18.2%
Learning about record linkage | 68.2%
Record linkage research 40.9%

Nearly 70% of the respondents (15 of 22) were using or ex-
ploring other record linkage systems besides Febrl. These
included other open source systems (Kettle by Penthao, the
Link King, and Sun’s Mural), various commercial products,

Volume 11, Issue 1

Page 46

SIGKDD Explorations

Febrl - (None)*

Fle Tocls Help

L =

MNew Save Quit

a O standardisation @ Deduplication

O Linkage

Data | Explore | index | compare | Classify OulpuURun‘ Log ‘

B

Generated Febrl code for "classification' on Sat Oct 6 11:28:25 2007

Define weight vector (record pair) classifier

classifier = classification.kMeans(dist_measure = mymath.distCanberra,
max_iter_count = 1000,
sample = 50,
fuzz_reg_thres = 0.2,
centroid_init = "min/max")

Al

I I [2)

Generated Febrl Python code for classification (see Log page for generated code).

Figure 14: Log tab showing the Febrl Python code generated
for an example ‘KMeans’ classifier.

as well as specific solutions developed in-house. More than
three-quarters of the respondents (77%) affirmed that their
choice of Febrl was influenced by it being open source soft-
ware. The justifications for this answer ranged from strong
believers in the open source philosophy, to the more prag-
matic views of no costs involved, or that it was important to
have access to the source code in order to be able to compare
record linkage algorithms for research.

One of the biggest improvements in Febrl version 0.4 was
the addition of a GUI. Surprisingly, however, only a bit more
than half (53%) of all respondents replied that the inclusion
of the GUI made a big difference in their appreciation of
Febrl. This can partially be explained by the fact that nearly
half of all respondents have used Febrl before the GUI was
released (November 2007), and they were therefore used to
configure it by modifying or writing Python programs.

As Febrl’s advantages, respondents listed: being well doc-
umented and its references to published research (Febrl is
not based on trade secrets); being highly configurable and
extendible; the availability of its source code; the variety of
techniques implemented for all steps of the record linkage
process; and the inclusion of a data generator.

On the other hand, according to the respondents, Febrl’s
major disadvantages include its poor scalability; its require-
ment of large amounts of memory for large data sets; its
slowness (because it is implemented in Python); missing
handling of linked data (merging of linked records); error
messages that are not always clear; the small community
which means help is not easy to get; a complex installation
procedure (no one-in-all installer available); the requirement
of Python skills to configure Febrl; no direct database ac-
cess; and only limited support from the developers.
Overall, most respondents were pleased about this freely
available data cleaning, deduplication and record linkage
system. Febrl gave them the opportunities to learn more
about the techniques used for these tasks, and allowed them
to conduct practical experimental linkages, something that
would not have been possibly without Febrl.

6. CONCLUSIONS AND FUTURE WORK

From a developer’s point of view, the Febrl project has been
— and still is — an interesting experience. On one hand, the
development of software that can be published requires a

much increased effort compared to writing research proto-
type software that is only used for experimental evaluations.
The development of the Febrl GUI especially was a very time
consuming effort. On the other hand, the feedback received
from users, and the contacts gained with record linkage re-
searchers and practitioners worldwide, would not have been
possible without Febrl.

The Febrl software has made an impact in the areas of data
cleaning, deduplication and record linkage. However, mea-
suring the impact of such an open source project is not sim-
ple. Download numbers on one hand, and the number of
users registered on a mailing list on the other hand, seem to
be the two ends of the impact spectrum (one might be too
high, the other too low). For application oriented software
such as Febrl, which is primarily used by people other than
computer science researchers, the feedback received from
users can be very limited.

If open source software like Febrl is used within organisa-
tions for experimental or even for production linkages, then
commonly this is not acknowledged by the organisation in
reports that present results of such linkage projects, or on
their corresponding Web sites. This can be quite frustrating
from the point of view of an academic who needs to be able
to prove the impact of her or his research (besides academic
citation numbers), in order to successfully progress in her or
his academic career.

Ease of installation on all popular operating systems is likely
to be a major critical factor that can make or break the
success of an open source application software. If poten-
tial users cannot install open source software in the same
way as commercial software, they will likely become easily
frustrated and abandon the installation process (Febrl cur-
rently requires manual installation of various Python mod-
ules). Users outside of the computer science and informa-
tion technology domains, for example people working in the
health sector or the social sciences, might not have the skills
required for a complicated installation process, and there-
fore might quickly give up on using software that does not
provides a simple and automatic installation procedure. Re-
quests to support and help with installation on different sys-
tems can be outside of the expertise of the developers.
Besides reports on bugs in the Febrl software, a common
topic of feedback by users to the Febrl developers is the
question of when and if certain features will be added to the
software. While most of such features would be of general
interest and some are already in Febrl’s to-do list (such as
completing the GUI functionalities or adding clerical review
support), other requests are specific to a certain domain (e.g.
the health sector), country (like providing country specific
look-up files for data cleaning), or application area (for ex-
ample special field comparison functions for business related
data). Due to the limited resources (mainly time) of the
Febrl developers, it is unlikely that such features will ever
be added, unless significant resources will become available
to the developers, or parts of the development are taken over
by other individuals or organisations.

As mentioned in the previous paragraph, there is a long
(wish) list of features that should be added to the Febrl
software at some stage. Completing the functionality of
the GUI, and including the data generator and the HMM
training modules into the GUI are three major pieces of de-
velopment that are required. Adding further quality mea-
sures, such as ROC curve or AUC, and an interactive feature

Volume 11, Issue 1

Page 47

SIGKDD Explorations

that allows manipulation of a classification threshold on the
histogram shown on the ‘Evaluate’ tab, would be a major
benefit. It would allow users to play with the classification
threshold and immediately see the resulting changes in link-
age quality measures. Another major addition to the GUI
would be a ‘Review’ tab which allows users to view and man-
ually classify record pairs as matches or non-matches that
were originally classified as possibly matches. The manually
classified record pairs can then be used as training examples,
by feeding their match status back to the classifier (as shown
in Figure 1), facilitating the improvement of the deduplica-
tion or linkage quality.

Apart from the GUI, additional output options should be
added to Febrl that allow flexible merging of the linked
records into a linked output data set. Providing access to
SQL and ODBC databases, in order to load input data from
a database and write the linked output data back into a
database, would allow the integration of Febrl into a variety
of database environments. Implementing additional meth-
ods for field comparison, classification and indexing would
extend Febrl’s utility as an experimental platform.
Another avenue of work that would make Febrl more versa-
tile and applicable for practical use will be to improve the
performance of the core modules, and at the same time re-
ducing the amount of memory required when deduplicating
or linking larger data sets. Performance can be increased by
replacing the core comparison functions and indexing data
structures, currently written in Python, with corresponding
C code. Given the increasing availability of multi-core par-
allel computing platforms, an orthogonal way of increasing
performance will be to develop parallel versions of all core
Febrl modules (note that version 0.3 of Febrl did include
some experimental parallelisation approaches [9]).

7. ACKNOWLEDGEMENTS

This research has been supported by the Australian Re-
search Council (ARC) under Linkage Project LP0453463. It
was partially funded by the New South Wales Department
of Health, Sydney, with additional funding provided by the
Australian Partnership for Advanced Computing. The au-
thor would like to thank everybody who has contributed to
the Febrl project over the years, and also thank all Febrl
users who responded to the questionnaire.

8. REFERENCES

[1] A. Aizawa and K. Oyama. A fast linkage detection scheme for
multi-source information integration. In International Work-
shop on Challenges in Web Information Retrieval and Inte-
gration (WIRI’05), pages 30-39, Tokyo, 2005.

[2] R. Baxter, P. Christen, and T. Churches. A comparison of fast
blocking methods for record linkage. In ACM SIGKDD’03 work-
shop on Data Cleaning, Record Linkage and Object Consolida-
tion, pages 25-27, Washington DC, 2003.

[3] P. Christen. A comparison of personal name matching: Tech-
niques and practical issues. In Workshop on Mining Complex
Data (MCD’06), held at IEEE ICDM’06, Hong Kong, 2006.

[4] P. Christen. A two-step classification approach to unsuper-
vised record linkage. In Australasian Data Mining Conference
(AusDM’07), Conferences in Research and Practice in Infor-
mation Technology (CRPIT), volume 70, pages 111-119, Gold
Coast, Australia, 2007.

[5] P. Christen. Automatic record linkage using seeded nearest
neighbour and support vector machine classification. In ACM

6]

(7]

8l

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

International Conference on Knowledge Discovery and Data
Mining (SIGKDD’08), pages 151-159, Las Vegas, 2008.

P. Christen. Automatic training example selection for scal-
able unsupervised record linkage. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD’08),
Springer LNAI 5012, pages 511-518, Osaka, Japan, 2008.

P. Christen. Febrl — An open source data cleaning, deduplica-
tion and record linkage system with a graphical user interface
(Demonstration Session). In ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD’08), pages
1065-1068, Las Vegas, 2008.

P. Christen and D. Belacic. Automated probabilistic address
standardisation and verification. In Australasian Data Mining
Conference (AusDM’05), pages 53-67, Sydney, 2005.

P. Christen, T. Churches, and M. Hegland. Febrl — A paral-
lel open source data linkage system. In Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining (PAKDD’04),
Springer LNAI 3056, pages 638-647, Sydney, 2004.

P. Christen and K. Goiser. Quality and complexity measures for
data linkage and deduplication. In F. Guillet and H. Hamilton,
editors, Quality Measures in Data Mining, volume 43 of Studies
in Computational Intelligence, pages 127-151. Springer, 2007.

P. Christen and A. Pudjijono. Accurate synthetic generation
of realistic personal information. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD’09),
Springer LNAI 5476, pages 507-514, Bangkok, Thailand, 2009.

T. Churches, P. Christen, K. Lim, and J. X. Zhu. Prepara-
tion of name and address data for record linkage using hidden
Markov models. BioMed Central Medical Informatics and De-
cision Making, 2(9), 2002.

D. E. Clark. Practical introduction to record linkage for injury
research. British Medical Journal, 10(3):186-191, 2004.

W. W. Cohen, P. Ravikumar, and S. Fienberg. A comparison of
string distance metrics for name-matching tasks. In Workshop
on Information Integration on the Web (IIWeb’03), held at
1JCATI’03, pages 73-78, Acapulco, 2003.

W. W. Cohen and J. Richman. Learning to match and cluster
large high-dimensional data sets for data integration. In ACM
International Conference on Knowledge Discovery and Data
Mining (SIGKDD’02), pages 475-480, Edmonton, 2002.

A. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate record
detection: A survey. IEEE Transactions on Knowledge and
Data Engineering, 19(1):1-16, 2007.

I. P. Fellegi and A. B. Sunter. A theory for record linkage.
Journal of the American Statistical Society, 64(328):1183-1210,
1969.

K. Goiser and P. Christen. Towards automated record linkage.
In Australasian Data Mining Conference (AusDM’06), Con-
ferences in Research and Practice in Information Technology
(CRPIT), volume 61, pages 23-31, Sydney, 2006.

L. Gu and R. Baxter. Decision models for record linkage. In
Selected Papers from AusDM, Springer LNCS 3755, pages 146—
160, 2006.

M. A. Hernandez and S. J. Stolfo. The merge/purge problem for
large databases. In ACM International Conference on Manage-
ment of Data (SIGMOD’95), pages 127-138, San Jose, 1995.

L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in large
data sets. In International Conference on Database Systems for
Advanced Applications (DASFAA’03), pages 137-146, Tokyo,
2003.

G. Williams. Data mining with Rattle and R. Togaware, Can-
berra, 2009. Software available at: http://rattle.togaware.com.

‘W. Winkler. Methods for evaluating and creating data quality.
Elsevier Information Systems, 29(7):531-550, 2004.

W. E. Yancey. BigMatch: A program for extracting probable
matches from a large file for record linkage. Technical Report
RR2007/01, US Bureau of the Census, 2007.

Volume 11, Issue 1

Page 48

