bxiong commited on
Commit
690f3ef
·
verified ·
1 Parent(s): 584f0fc

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-340/training_args.bin +3 -0
  2. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-360/trainer_state.json +573 -0
  3. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-370/README.md +202 -0
  4. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-370/adapter_config.json +31 -0
  5. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-370/trainer_state.json +588 -0
  6. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-380/README.md +202 -0
  7. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-380/adapter_config.json +31 -0
  8. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-380/trainer_state.json +603 -0
  9. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-390/README.md +202 -0
  10. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-390/adapter_config.json +31 -0
  11. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-390/trainer_state.json +618 -0
  12. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-400/README.md +202 -0
  13. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-400/adapter_config.json +31 -0
  14. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-400/trainer_state.json +633 -0
  15. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-410/README.md +202 -0
  16. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-410/adapter_config.json +31 -0
  17. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-410/trainer_state.json +648 -0
  18. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-420/README.md +202 -0
  19. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-420/adapter_config.json +31 -0
  20. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-420/trainer_state.json +663 -0
  21. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-430/README.md +202 -0
  22. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-430/adapter_config.json +31 -0
  23. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-430/trainer_state.json +678 -0
  24. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-440/README.md +202 -0
  25. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-440/adapter_config.json +31 -0
  26. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-440/trainer_state.json +693 -0
  27. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-450/README.md +202 -0
  28. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-450/adapter_config.json +31 -0
  29. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-450/trainer_state.json +708 -0
  30. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-460/README.md +202 -0
  31. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-460/adapter_config.json +31 -0
  32. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-460/trainer_state.json +723 -0
  33. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-470/README.md +202 -0
  34. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-470/adapter_config.json +31 -0
  35. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-470/trainer_state.json +738 -0
  36. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-480/README.md +202 -0
  37. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-480/adapter_config.json +31 -0
  38. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-480/trainer_state.json +753 -0
  39. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-490/README.md +202 -0
  40. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-490/adapter_config.json +31 -0
  41. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-490/trainer_state.json +768 -0
  42. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-500/README.md +202 -0
  43. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-500/adapter_config.json +31 -0
  44. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-500/trainer_state.json +783 -0
  45. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-510/README.md +202 -0
  46. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-510/adapter_config.json +31 -0
  47. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-510/trainer_state.json +798 -0
  48. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-520/README.md +202 -0
  49. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-520/adapter_config.json +31 -0
  50. output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-520/trainer_state.json +813 -0
output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-340/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcd1c97436f17c76a95e555a202357fc5d404d4db34b16ce464eff2015924c49
3
+ size 4859
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-360/trainer_state.json ADDED
@@ -0,0 +1,573 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 4.8,
5
+ "eval_steps": 10,
6
+ "global_step": 360,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ }
551
+ ],
552
+ "logging_steps": 10,
553
+ "max_steps": 675,
554
+ "num_input_tokens_seen": 0,
555
+ "num_train_epochs": 9,
556
+ "save_steps": 10,
557
+ "stateful_callbacks": {
558
+ "TrainerControl": {
559
+ "args": {
560
+ "should_epoch_stop": false,
561
+ "should_evaluate": false,
562
+ "should_log": false,
563
+ "should_save": true,
564
+ "should_training_stop": false
565
+ },
566
+ "attributes": {}
567
+ }
568
+ },
569
+ "total_flos": 5.89898591502336e+16,
570
+ "train_batch_size": 8,
571
+ "trial_name": null,
572
+ "trial_params": null
573
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-370/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-370/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-370/trainer_state.json ADDED
@@ -0,0 +1,588 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 4.933333333333334,
5
+ "eval_steps": 10,
6
+ "global_step": 370,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ }
566
+ ],
567
+ "logging_steps": 10,
568
+ "max_steps": 675,
569
+ "num_input_tokens_seen": 0,
570
+ "num_train_epochs": 9,
571
+ "save_steps": 10,
572
+ "stateful_callbacks": {
573
+ "TrainerControl": {
574
+ "args": {
575
+ "should_epoch_stop": false,
576
+ "should_evaluate": false,
577
+ "should_log": false,
578
+ "should_save": true,
579
+ "should_training_stop": false
580
+ },
581
+ "attributes": {}
582
+ }
583
+ },
584
+ "total_flos": 6.06284663488512e+16,
585
+ "train_batch_size": 8,
586
+ "trial_name": null,
587
+ "trial_params": null
588
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-380/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-380/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-380/trainer_state.json ADDED
@@ -0,0 +1,603 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 5.066666666666666,
5
+ "eval_steps": 10,
6
+ "global_step": 380,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.9239799976348877,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.185,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.005242109298706,
576
+ "eval_runtime": 43.9141,
577
+ "eval_samples_per_second": 22.772,
578
+ "eval_steps_per_second": 2.846,
579
+ "step": 380
580
+ }
581
+ ],
582
+ "logging_steps": 10,
583
+ "max_steps": 675,
584
+ "num_input_tokens_seen": 0,
585
+ "num_train_epochs": 9,
586
+ "save_steps": 10,
587
+ "stateful_callbacks": {
588
+ "TrainerControl": {
589
+ "args": {
590
+ "should_epoch_stop": false,
591
+ "should_evaluate": false,
592
+ "should_log": false,
593
+ "should_save": true,
594
+ "should_training_stop": false
595
+ },
596
+ "attributes": {}
597
+ }
598
+ },
599
+ "total_flos": 6.22670735474688e+16,
600
+ "train_batch_size": 8,
601
+ "trial_name": null,
602
+ "trial_params": null
603
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-390/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-390/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-390/trainer_state.json ADDED
@@ -0,0 +1,618 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 5.2,
5
+ "eval_steps": 10,
6
+ "global_step": 390,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.9239799976348877,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.185,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.005242109298706,
576
+ "eval_runtime": 43.9141,
577
+ "eval_samples_per_second": 22.772,
578
+ "eval_steps_per_second": 2.846,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 2.4055938720703125,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.2093,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 2.0709946155548096,
591
+ "eval_runtime": 43.879,
592
+ "eval_samples_per_second": 22.79,
593
+ "eval_steps_per_second": 2.849,
594
+ "step": 390
595
+ }
596
+ ],
597
+ "logging_steps": 10,
598
+ "max_steps": 675,
599
+ "num_input_tokens_seen": 0,
600
+ "num_train_epochs": 9,
601
+ "save_steps": 10,
602
+ "stateful_callbacks": {
603
+ "TrainerControl": {
604
+ "args": {
605
+ "should_epoch_stop": false,
606
+ "should_evaluate": false,
607
+ "should_log": false,
608
+ "should_save": true,
609
+ "should_training_stop": false
610
+ },
611
+ "attributes": {}
612
+ }
613
+ },
614
+ "total_flos": 6.39056807460864e+16,
615
+ "train_batch_size": 8,
616
+ "trial_name": null,
617
+ "trial_params": null
618
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-400/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-400/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-400/trainer_state.json ADDED
@@ -0,0 +1,633 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 5.333333333333333,
5
+ "eval_steps": 10,
6
+ "global_step": 400,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.9239799976348877,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.185,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.005242109298706,
576
+ "eval_runtime": 43.9141,
577
+ "eval_samples_per_second": 22.772,
578
+ "eval_steps_per_second": 2.846,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 2.4055938720703125,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.2093,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 2.0709946155548096,
591
+ "eval_runtime": 43.879,
592
+ "eval_samples_per_second": 22.79,
593
+ "eval_steps_per_second": 2.849,
594
+ "step": 390
595
+ },
596
+ {
597
+ "epoch": 5.333333333333333,
598
+ "grad_norm": 2.323967933654785,
599
+ "learning_rate": 3.259259259259259e-05,
600
+ "loss": 1.1375,
601
+ "step": 400
602
+ },
603
+ {
604
+ "epoch": 5.333333333333333,
605
+ "eval_loss": 2.0645956993103027,
606
+ "eval_runtime": 43.9369,
607
+ "eval_samples_per_second": 22.76,
608
+ "eval_steps_per_second": 2.845,
609
+ "step": 400
610
+ }
611
+ ],
612
+ "logging_steps": 10,
613
+ "max_steps": 675,
614
+ "num_input_tokens_seen": 0,
615
+ "num_train_epochs": 9,
616
+ "save_steps": 10,
617
+ "stateful_callbacks": {
618
+ "TrainerControl": {
619
+ "args": {
620
+ "should_epoch_stop": false,
621
+ "should_evaluate": false,
622
+ "should_log": false,
623
+ "should_save": true,
624
+ "should_training_stop": false
625
+ },
626
+ "attributes": {}
627
+ }
628
+ },
629
+ "total_flos": 6.5544287944704e+16,
630
+ "train_batch_size": 8,
631
+ "trial_name": null,
632
+ "trial_params": null
633
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-410/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-410/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-410/trainer_state.json ADDED
@@ -0,0 +1,648 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 5.466666666666667,
5
+ "eval_steps": 10,
6
+ "global_step": 410,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.9239799976348877,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.185,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.005242109298706,
576
+ "eval_runtime": 43.9141,
577
+ "eval_samples_per_second": 22.772,
578
+ "eval_steps_per_second": 2.846,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 2.4055938720703125,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.2093,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 2.0709946155548096,
591
+ "eval_runtime": 43.879,
592
+ "eval_samples_per_second": 22.79,
593
+ "eval_steps_per_second": 2.849,
594
+ "step": 390
595
+ },
596
+ {
597
+ "epoch": 5.333333333333333,
598
+ "grad_norm": 2.323967933654785,
599
+ "learning_rate": 3.259259259259259e-05,
600
+ "loss": 1.1375,
601
+ "step": 400
602
+ },
603
+ {
604
+ "epoch": 5.333333333333333,
605
+ "eval_loss": 2.0645956993103027,
606
+ "eval_runtime": 43.9369,
607
+ "eval_samples_per_second": 22.76,
608
+ "eval_steps_per_second": 2.845,
609
+ "step": 400
610
+ },
611
+ {
612
+ "epoch": 5.466666666666667,
613
+ "grad_norm": 2.261169910430908,
614
+ "learning_rate": 3.140740740740741e-05,
615
+ "loss": 1.1111,
616
+ "step": 410
617
+ },
618
+ {
619
+ "epoch": 5.466666666666667,
620
+ "eval_loss": 2.0542006492614746,
621
+ "eval_runtime": 43.9104,
622
+ "eval_samples_per_second": 22.774,
623
+ "eval_steps_per_second": 2.847,
624
+ "step": 410
625
+ }
626
+ ],
627
+ "logging_steps": 10,
628
+ "max_steps": 675,
629
+ "num_input_tokens_seen": 0,
630
+ "num_train_epochs": 9,
631
+ "save_steps": 10,
632
+ "stateful_callbacks": {
633
+ "TrainerControl": {
634
+ "args": {
635
+ "should_epoch_stop": false,
636
+ "should_evaluate": false,
637
+ "should_log": false,
638
+ "should_save": true,
639
+ "should_training_stop": false
640
+ },
641
+ "attributes": {}
642
+ }
643
+ },
644
+ "total_flos": 6.71828951433216e+16,
645
+ "train_batch_size": 8,
646
+ "trial_name": null,
647
+ "trial_params": null
648
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-420/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-420/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-420/trainer_state.json ADDED
@@ -0,0 +1,663 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 5.6,
5
+ "eval_steps": 10,
6
+ "global_step": 420,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.9239799976348877,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.185,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.005242109298706,
576
+ "eval_runtime": 43.9141,
577
+ "eval_samples_per_second": 22.772,
578
+ "eval_steps_per_second": 2.846,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 2.4055938720703125,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.2093,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 2.0709946155548096,
591
+ "eval_runtime": 43.879,
592
+ "eval_samples_per_second": 22.79,
593
+ "eval_steps_per_second": 2.849,
594
+ "step": 390
595
+ },
596
+ {
597
+ "epoch": 5.333333333333333,
598
+ "grad_norm": 2.323967933654785,
599
+ "learning_rate": 3.259259259259259e-05,
600
+ "loss": 1.1375,
601
+ "step": 400
602
+ },
603
+ {
604
+ "epoch": 5.333333333333333,
605
+ "eval_loss": 2.0645956993103027,
606
+ "eval_runtime": 43.9369,
607
+ "eval_samples_per_second": 22.76,
608
+ "eval_steps_per_second": 2.845,
609
+ "step": 400
610
+ },
611
+ {
612
+ "epoch": 5.466666666666667,
613
+ "grad_norm": 2.261169910430908,
614
+ "learning_rate": 3.140740740740741e-05,
615
+ "loss": 1.1111,
616
+ "step": 410
617
+ },
618
+ {
619
+ "epoch": 5.466666666666667,
620
+ "eval_loss": 2.0542006492614746,
621
+ "eval_runtime": 43.9104,
622
+ "eval_samples_per_second": 22.774,
623
+ "eval_steps_per_second": 2.847,
624
+ "step": 410
625
+ },
626
+ {
627
+ "epoch": 5.6,
628
+ "grad_norm": 2.4246268272399902,
629
+ "learning_rate": 3.0222222222222225e-05,
630
+ "loss": 1.2143,
631
+ "step": 420
632
+ },
633
+ {
634
+ "epoch": 5.6,
635
+ "eval_loss": 2.067005157470703,
636
+ "eval_runtime": 43.8345,
637
+ "eval_samples_per_second": 22.813,
638
+ "eval_steps_per_second": 2.852,
639
+ "step": 420
640
+ }
641
+ ],
642
+ "logging_steps": 10,
643
+ "max_steps": 675,
644
+ "num_input_tokens_seen": 0,
645
+ "num_train_epochs": 9,
646
+ "save_steps": 10,
647
+ "stateful_callbacks": {
648
+ "TrainerControl": {
649
+ "args": {
650
+ "should_epoch_stop": false,
651
+ "should_evaluate": false,
652
+ "should_log": false,
653
+ "should_save": true,
654
+ "should_training_stop": false
655
+ },
656
+ "attributes": {}
657
+ }
658
+ },
659
+ "total_flos": 6.88215023419392e+16,
660
+ "train_batch_size": 8,
661
+ "trial_name": null,
662
+ "trial_params": null
663
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-430/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-430/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-430/trainer_state.json ADDED
@@ -0,0 +1,678 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 5.733333333333333,
5
+ "eval_steps": 10,
6
+ "global_step": 430,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.9239799976348877,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.185,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.005242109298706,
576
+ "eval_runtime": 43.9141,
577
+ "eval_samples_per_second": 22.772,
578
+ "eval_steps_per_second": 2.846,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 2.4055938720703125,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.2093,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 2.0709946155548096,
591
+ "eval_runtime": 43.879,
592
+ "eval_samples_per_second": 22.79,
593
+ "eval_steps_per_second": 2.849,
594
+ "step": 390
595
+ },
596
+ {
597
+ "epoch": 5.333333333333333,
598
+ "grad_norm": 2.323967933654785,
599
+ "learning_rate": 3.259259259259259e-05,
600
+ "loss": 1.1375,
601
+ "step": 400
602
+ },
603
+ {
604
+ "epoch": 5.333333333333333,
605
+ "eval_loss": 2.0645956993103027,
606
+ "eval_runtime": 43.9369,
607
+ "eval_samples_per_second": 22.76,
608
+ "eval_steps_per_second": 2.845,
609
+ "step": 400
610
+ },
611
+ {
612
+ "epoch": 5.466666666666667,
613
+ "grad_norm": 2.261169910430908,
614
+ "learning_rate": 3.140740740740741e-05,
615
+ "loss": 1.1111,
616
+ "step": 410
617
+ },
618
+ {
619
+ "epoch": 5.466666666666667,
620
+ "eval_loss": 2.0542006492614746,
621
+ "eval_runtime": 43.9104,
622
+ "eval_samples_per_second": 22.774,
623
+ "eval_steps_per_second": 2.847,
624
+ "step": 410
625
+ },
626
+ {
627
+ "epoch": 5.6,
628
+ "grad_norm": 2.4246268272399902,
629
+ "learning_rate": 3.0222222222222225e-05,
630
+ "loss": 1.2143,
631
+ "step": 420
632
+ },
633
+ {
634
+ "epoch": 5.6,
635
+ "eval_loss": 2.067005157470703,
636
+ "eval_runtime": 43.8345,
637
+ "eval_samples_per_second": 22.813,
638
+ "eval_steps_per_second": 2.852,
639
+ "step": 420
640
+ },
641
+ {
642
+ "epoch": 5.733333333333333,
643
+ "grad_norm": 2.608240842819214,
644
+ "learning_rate": 2.9037037037037042e-05,
645
+ "loss": 1.1988,
646
+ "step": 430
647
+ },
648
+ {
649
+ "epoch": 5.733333333333333,
650
+ "eval_loss": 2.0488076210021973,
651
+ "eval_runtime": 43.8385,
652
+ "eval_samples_per_second": 22.811,
653
+ "eval_steps_per_second": 2.851,
654
+ "step": 430
655
+ }
656
+ ],
657
+ "logging_steps": 10,
658
+ "max_steps": 675,
659
+ "num_input_tokens_seen": 0,
660
+ "num_train_epochs": 9,
661
+ "save_steps": 10,
662
+ "stateful_callbacks": {
663
+ "TrainerControl": {
664
+ "args": {
665
+ "should_epoch_stop": false,
666
+ "should_evaluate": false,
667
+ "should_log": false,
668
+ "should_save": true,
669
+ "should_training_stop": false
670
+ },
671
+ "attributes": {}
672
+ }
673
+ },
674
+ "total_flos": 7.04601095405568e+16,
675
+ "train_batch_size": 8,
676
+ "trial_name": null,
677
+ "trial_params": null
678
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-440/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-440/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-440/trainer_state.json ADDED
@@ -0,0 +1,693 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 5.866666666666667,
5
+ "eval_steps": 10,
6
+ "global_step": 440,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.9239799976348877,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.185,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.005242109298706,
576
+ "eval_runtime": 43.9141,
577
+ "eval_samples_per_second": 22.772,
578
+ "eval_steps_per_second": 2.846,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 2.4055938720703125,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.2093,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 2.0709946155548096,
591
+ "eval_runtime": 43.879,
592
+ "eval_samples_per_second": 22.79,
593
+ "eval_steps_per_second": 2.849,
594
+ "step": 390
595
+ },
596
+ {
597
+ "epoch": 5.333333333333333,
598
+ "grad_norm": 2.323967933654785,
599
+ "learning_rate": 3.259259259259259e-05,
600
+ "loss": 1.1375,
601
+ "step": 400
602
+ },
603
+ {
604
+ "epoch": 5.333333333333333,
605
+ "eval_loss": 2.0645956993103027,
606
+ "eval_runtime": 43.9369,
607
+ "eval_samples_per_second": 22.76,
608
+ "eval_steps_per_second": 2.845,
609
+ "step": 400
610
+ },
611
+ {
612
+ "epoch": 5.466666666666667,
613
+ "grad_norm": 2.261169910430908,
614
+ "learning_rate": 3.140740740740741e-05,
615
+ "loss": 1.1111,
616
+ "step": 410
617
+ },
618
+ {
619
+ "epoch": 5.466666666666667,
620
+ "eval_loss": 2.0542006492614746,
621
+ "eval_runtime": 43.9104,
622
+ "eval_samples_per_second": 22.774,
623
+ "eval_steps_per_second": 2.847,
624
+ "step": 410
625
+ },
626
+ {
627
+ "epoch": 5.6,
628
+ "grad_norm": 2.4246268272399902,
629
+ "learning_rate": 3.0222222222222225e-05,
630
+ "loss": 1.2143,
631
+ "step": 420
632
+ },
633
+ {
634
+ "epoch": 5.6,
635
+ "eval_loss": 2.067005157470703,
636
+ "eval_runtime": 43.8345,
637
+ "eval_samples_per_second": 22.813,
638
+ "eval_steps_per_second": 2.852,
639
+ "step": 420
640
+ },
641
+ {
642
+ "epoch": 5.733333333333333,
643
+ "grad_norm": 2.608240842819214,
644
+ "learning_rate": 2.9037037037037042e-05,
645
+ "loss": 1.1988,
646
+ "step": 430
647
+ },
648
+ {
649
+ "epoch": 5.733333333333333,
650
+ "eval_loss": 2.0488076210021973,
651
+ "eval_runtime": 43.8385,
652
+ "eval_samples_per_second": 22.811,
653
+ "eval_steps_per_second": 2.851,
654
+ "step": 430
655
+ },
656
+ {
657
+ "epoch": 5.866666666666667,
658
+ "grad_norm": 2.4107654094696045,
659
+ "learning_rate": 2.7851851851851856e-05,
660
+ "loss": 1.1931,
661
+ "step": 440
662
+ },
663
+ {
664
+ "epoch": 5.866666666666667,
665
+ "eval_loss": 2.0491933822631836,
666
+ "eval_runtime": 43.8329,
667
+ "eval_samples_per_second": 22.814,
668
+ "eval_steps_per_second": 2.852,
669
+ "step": 440
670
+ }
671
+ ],
672
+ "logging_steps": 10,
673
+ "max_steps": 675,
674
+ "num_input_tokens_seen": 0,
675
+ "num_train_epochs": 9,
676
+ "save_steps": 10,
677
+ "stateful_callbacks": {
678
+ "TrainerControl": {
679
+ "args": {
680
+ "should_epoch_stop": false,
681
+ "should_evaluate": false,
682
+ "should_log": false,
683
+ "should_save": true,
684
+ "should_training_stop": false
685
+ },
686
+ "attributes": {}
687
+ }
688
+ },
689
+ "total_flos": 7.20987167391744e+16,
690
+ "train_batch_size": 8,
691
+ "trial_name": null,
692
+ "trial_params": null
693
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-450/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-450/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-450/trainer_state.json ADDED
@@ -0,0 +1,708 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 6.0,
5
+ "eval_steps": 10,
6
+ "global_step": 450,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.9239799976348877,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.185,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.005242109298706,
576
+ "eval_runtime": 43.9141,
577
+ "eval_samples_per_second": 22.772,
578
+ "eval_steps_per_second": 2.846,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 2.4055938720703125,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.2093,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 2.0709946155548096,
591
+ "eval_runtime": 43.879,
592
+ "eval_samples_per_second": 22.79,
593
+ "eval_steps_per_second": 2.849,
594
+ "step": 390
595
+ },
596
+ {
597
+ "epoch": 5.333333333333333,
598
+ "grad_norm": 2.323967933654785,
599
+ "learning_rate": 3.259259259259259e-05,
600
+ "loss": 1.1375,
601
+ "step": 400
602
+ },
603
+ {
604
+ "epoch": 5.333333333333333,
605
+ "eval_loss": 2.0645956993103027,
606
+ "eval_runtime": 43.9369,
607
+ "eval_samples_per_second": 22.76,
608
+ "eval_steps_per_second": 2.845,
609
+ "step": 400
610
+ },
611
+ {
612
+ "epoch": 5.466666666666667,
613
+ "grad_norm": 2.261169910430908,
614
+ "learning_rate": 3.140740740740741e-05,
615
+ "loss": 1.1111,
616
+ "step": 410
617
+ },
618
+ {
619
+ "epoch": 5.466666666666667,
620
+ "eval_loss": 2.0542006492614746,
621
+ "eval_runtime": 43.9104,
622
+ "eval_samples_per_second": 22.774,
623
+ "eval_steps_per_second": 2.847,
624
+ "step": 410
625
+ },
626
+ {
627
+ "epoch": 5.6,
628
+ "grad_norm": 2.4246268272399902,
629
+ "learning_rate": 3.0222222222222225e-05,
630
+ "loss": 1.2143,
631
+ "step": 420
632
+ },
633
+ {
634
+ "epoch": 5.6,
635
+ "eval_loss": 2.067005157470703,
636
+ "eval_runtime": 43.8345,
637
+ "eval_samples_per_second": 22.813,
638
+ "eval_steps_per_second": 2.852,
639
+ "step": 420
640
+ },
641
+ {
642
+ "epoch": 5.733333333333333,
643
+ "grad_norm": 2.608240842819214,
644
+ "learning_rate": 2.9037037037037042e-05,
645
+ "loss": 1.1988,
646
+ "step": 430
647
+ },
648
+ {
649
+ "epoch": 5.733333333333333,
650
+ "eval_loss": 2.0488076210021973,
651
+ "eval_runtime": 43.8385,
652
+ "eval_samples_per_second": 22.811,
653
+ "eval_steps_per_second": 2.851,
654
+ "step": 430
655
+ },
656
+ {
657
+ "epoch": 5.866666666666667,
658
+ "grad_norm": 2.4107654094696045,
659
+ "learning_rate": 2.7851851851851856e-05,
660
+ "loss": 1.1931,
661
+ "step": 440
662
+ },
663
+ {
664
+ "epoch": 5.866666666666667,
665
+ "eval_loss": 2.0491933822631836,
666
+ "eval_runtime": 43.8329,
667
+ "eval_samples_per_second": 22.814,
668
+ "eval_steps_per_second": 2.852,
669
+ "step": 440
670
+ },
671
+ {
672
+ "epoch": 6.0,
673
+ "grad_norm": 2.361257553100586,
674
+ "learning_rate": 2.6666666666666667e-05,
675
+ "loss": 1.1842,
676
+ "step": 450
677
+ },
678
+ {
679
+ "epoch": 6.0,
680
+ "eval_loss": 2.0560381412506104,
681
+ "eval_runtime": 43.8412,
682
+ "eval_samples_per_second": 22.81,
683
+ "eval_steps_per_second": 2.851,
684
+ "step": 450
685
+ }
686
+ ],
687
+ "logging_steps": 10,
688
+ "max_steps": 675,
689
+ "num_input_tokens_seen": 0,
690
+ "num_train_epochs": 9,
691
+ "save_steps": 10,
692
+ "stateful_callbacks": {
693
+ "TrainerControl": {
694
+ "args": {
695
+ "should_epoch_stop": false,
696
+ "should_evaluate": false,
697
+ "should_log": false,
698
+ "should_save": true,
699
+ "should_training_stop": false
700
+ },
701
+ "attributes": {}
702
+ }
703
+ },
704
+ "total_flos": 7.3737323937792e+16,
705
+ "train_batch_size": 8,
706
+ "trial_name": null,
707
+ "trial_params": null
708
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-460/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-460/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-460/trainer_state.json ADDED
@@ -0,0 +1,723 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 6.133333333333334,
5
+ "eval_steps": 10,
6
+ "global_step": 460,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.9239799976348877,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.185,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.005242109298706,
576
+ "eval_runtime": 43.9141,
577
+ "eval_samples_per_second": 22.772,
578
+ "eval_steps_per_second": 2.846,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 2.4055938720703125,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.2093,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 2.0709946155548096,
591
+ "eval_runtime": 43.879,
592
+ "eval_samples_per_second": 22.79,
593
+ "eval_steps_per_second": 2.849,
594
+ "step": 390
595
+ },
596
+ {
597
+ "epoch": 5.333333333333333,
598
+ "grad_norm": 2.323967933654785,
599
+ "learning_rate": 3.259259259259259e-05,
600
+ "loss": 1.1375,
601
+ "step": 400
602
+ },
603
+ {
604
+ "epoch": 5.333333333333333,
605
+ "eval_loss": 2.0645956993103027,
606
+ "eval_runtime": 43.9369,
607
+ "eval_samples_per_second": 22.76,
608
+ "eval_steps_per_second": 2.845,
609
+ "step": 400
610
+ },
611
+ {
612
+ "epoch": 5.466666666666667,
613
+ "grad_norm": 2.261169910430908,
614
+ "learning_rate": 3.140740740740741e-05,
615
+ "loss": 1.1111,
616
+ "step": 410
617
+ },
618
+ {
619
+ "epoch": 5.466666666666667,
620
+ "eval_loss": 2.0542006492614746,
621
+ "eval_runtime": 43.9104,
622
+ "eval_samples_per_second": 22.774,
623
+ "eval_steps_per_second": 2.847,
624
+ "step": 410
625
+ },
626
+ {
627
+ "epoch": 5.6,
628
+ "grad_norm": 2.4246268272399902,
629
+ "learning_rate": 3.0222222222222225e-05,
630
+ "loss": 1.2143,
631
+ "step": 420
632
+ },
633
+ {
634
+ "epoch": 5.6,
635
+ "eval_loss": 2.067005157470703,
636
+ "eval_runtime": 43.8345,
637
+ "eval_samples_per_second": 22.813,
638
+ "eval_steps_per_second": 2.852,
639
+ "step": 420
640
+ },
641
+ {
642
+ "epoch": 5.733333333333333,
643
+ "grad_norm": 2.608240842819214,
644
+ "learning_rate": 2.9037037037037042e-05,
645
+ "loss": 1.1988,
646
+ "step": 430
647
+ },
648
+ {
649
+ "epoch": 5.733333333333333,
650
+ "eval_loss": 2.0488076210021973,
651
+ "eval_runtime": 43.8385,
652
+ "eval_samples_per_second": 22.811,
653
+ "eval_steps_per_second": 2.851,
654
+ "step": 430
655
+ },
656
+ {
657
+ "epoch": 5.866666666666667,
658
+ "grad_norm": 2.4107654094696045,
659
+ "learning_rate": 2.7851851851851856e-05,
660
+ "loss": 1.1931,
661
+ "step": 440
662
+ },
663
+ {
664
+ "epoch": 5.866666666666667,
665
+ "eval_loss": 2.0491933822631836,
666
+ "eval_runtime": 43.8329,
667
+ "eval_samples_per_second": 22.814,
668
+ "eval_steps_per_second": 2.852,
669
+ "step": 440
670
+ },
671
+ {
672
+ "epoch": 6.0,
673
+ "grad_norm": 2.361257553100586,
674
+ "learning_rate": 2.6666666666666667e-05,
675
+ "loss": 1.1842,
676
+ "step": 450
677
+ },
678
+ {
679
+ "epoch": 6.0,
680
+ "eval_loss": 2.0560381412506104,
681
+ "eval_runtime": 43.8412,
682
+ "eval_samples_per_second": 22.81,
683
+ "eval_steps_per_second": 2.851,
684
+ "step": 450
685
+ },
686
+ {
687
+ "epoch": 6.133333333333334,
688
+ "grad_norm": 2.489898920059204,
689
+ "learning_rate": 2.5481481481481484e-05,
690
+ "loss": 1.03,
691
+ "step": 460
692
+ },
693
+ {
694
+ "epoch": 6.133333333333334,
695
+ "eval_loss": 2.1300723552703857,
696
+ "eval_runtime": 43.8534,
697
+ "eval_samples_per_second": 22.803,
698
+ "eval_steps_per_second": 2.85,
699
+ "step": 460
700
+ }
701
+ ],
702
+ "logging_steps": 10,
703
+ "max_steps": 675,
704
+ "num_input_tokens_seen": 0,
705
+ "num_train_epochs": 9,
706
+ "save_steps": 10,
707
+ "stateful_callbacks": {
708
+ "TrainerControl": {
709
+ "args": {
710
+ "should_epoch_stop": false,
711
+ "should_evaluate": false,
712
+ "should_log": false,
713
+ "should_save": true,
714
+ "should_training_stop": false
715
+ },
716
+ "attributes": {}
717
+ }
718
+ },
719
+ "total_flos": 7.53759311364096e+16,
720
+ "train_batch_size": 8,
721
+ "trial_name": null,
722
+ "trial_params": null
723
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-470/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-470/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-470/trainer_state.json ADDED
@@ -0,0 +1,738 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 6.266666666666667,
5
+ "eval_steps": 10,
6
+ "global_step": 470,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.9239799976348877,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.185,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.005242109298706,
576
+ "eval_runtime": 43.9141,
577
+ "eval_samples_per_second": 22.772,
578
+ "eval_steps_per_second": 2.846,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 2.4055938720703125,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.2093,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 2.0709946155548096,
591
+ "eval_runtime": 43.879,
592
+ "eval_samples_per_second": 22.79,
593
+ "eval_steps_per_second": 2.849,
594
+ "step": 390
595
+ },
596
+ {
597
+ "epoch": 5.333333333333333,
598
+ "grad_norm": 2.323967933654785,
599
+ "learning_rate": 3.259259259259259e-05,
600
+ "loss": 1.1375,
601
+ "step": 400
602
+ },
603
+ {
604
+ "epoch": 5.333333333333333,
605
+ "eval_loss": 2.0645956993103027,
606
+ "eval_runtime": 43.9369,
607
+ "eval_samples_per_second": 22.76,
608
+ "eval_steps_per_second": 2.845,
609
+ "step": 400
610
+ },
611
+ {
612
+ "epoch": 5.466666666666667,
613
+ "grad_norm": 2.261169910430908,
614
+ "learning_rate": 3.140740740740741e-05,
615
+ "loss": 1.1111,
616
+ "step": 410
617
+ },
618
+ {
619
+ "epoch": 5.466666666666667,
620
+ "eval_loss": 2.0542006492614746,
621
+ "eval_runtime": 43.9104,
622
+ "eval_samples_per_second": 22.774,
623
+ "eval_steps_per_second": 2.847,
624
+ "step": 410
625
+ },
626
+ {
627
+ "epoch": 5.6,
628
+ "grad_norm": 2.4246268272399902,
629
+ "learning_rate": 3.0222222222222225e-05,
630
+ "loss": 1.2143,
631
+ "step": 420
632
+ },
633
+ {
634
+ "epoch": 5.6,
635
+ "eval_loss": 2.067005157470703,
636
+ "eval_runtime": 43.8345,
637
+ "eval_samples_per_second": 22.813,
638
+ "eval_steps_per_second": 2.852,
639
+ "step": 420
640
+ },
641
+ {
642
+ "epoch": 5.733333333333333,
643
+ "grad_norm": 2.608240842819214,
644
+ "learning_rate": 2.9037037037037042e-05,
645
+ "loss": 1.1988,
646
+ "step": 430
647
+ },
648
+ {
649
+ "epoch": 5.733333333333333,
650
+ "eval_loss": 2.0488076210021973,
651
+ "eval_runtime": 43.8385,
652
+ "eval_samples_per_second": 22.811,
653
+ "eval_steps_per_second": 2.851,
654
+ "step": 430
655
+ },
656
+ {
657
+ "epoch": 5.866666666666667,
658
+ "grad_norm": 2.4107654094696045,
659
+ "learning_rate": 2.7851851851851856e-05,
660
+ "loss": 1.1931,
661
+ "step": 440
662
+ },
663
+ {
664
+ "epoch": 5.866666666666667,
665
+ "eval_loss": 2.0491933822631836,
666
+ "eval_runtime": 43.8329,
667
+ "eval_samples_per_second": 22.814,
668
+ "eval_steps_per_second": 2.852,
669
+ "step": 440
670
+ },
671
+ {
672
+ "epoch": 6.0,
673
+ "grad_norm": 2.361257553100586,
674
+ "learning_rate": 2.6666666666666667e-05,
675
+ "loss": 1.1842,
676
+ "step": 450
677
+ },
678
+ {
679
+ "epoch": 6.0,
680
+ "eval_loss": 2.0560381412506104,
681
+ "eval_runtime": 43.8412,
682
+ "eval_samples_per_second": 22.81,
683
+ "eval_steps_per_second": 2.851,
684
+ "step": 450
685
+ },
686
+ {
687
+ "epoch": 6.133333333333334,
688
+ "grad_norm": 2.489898920059204,
689
+ "learning_rate": 2.5481481481481484e-05,
690
+ "loss": 1.03,
691
+ "step": 460
692
+ },
693
+ {
694
+ "epoch": 6.133333333333334,
695
+ "eval_loss": 2.1300723552703857,
696
+ "eval_runtime": 43.8534,
697
+ "eval_samples_per_second": 22.803,
698
+ "eval_steps_per_second": 2.85,
699
+ "step": 460
700
+ },
701
+ {
702
+ "epoch": 6.266666666666667,
703
+ "grad_norm": 2.8632452487945557,
704
+ "learning_rate": 2.4296296296296298e-05,
705
+ "loss": 1.0839,
706
+ "step": 470
707
+ },
708
+ {
709
+ "epoch": 6.266666666666667,
710
+ "eval_loss": 2.1316983699798584,
711
+ "eval_runtime": 43.8685,
712
+ "eval_samples_per_second": 22.795,
713
+ "eval_steps_per_second": 2.849,
714
+ "step": 470
715
+ }
716
+ ],
717
+ "logging_steps": 10,
718
+ "max_steps": 675,
719
+ "num_input_tokens_seen": 0,
720
+ "num_train_epochs": 9,
721
+ "save_steps": 10,
722
+ "stateful_callbacks": {
723
+ "TrainerControl": {
724
+ "args": {
725
+ "should_epoch_stop": false,
726
+ "should_evaluate": false,
727
+ "should_log": false,
728
+ "should_save": true,
729
+ "should_training_stop": false
730
+ },
731
+ "attributes": {}
732
+ }
733
+ },
734
+ "total_flos": 7.70145383350272e+16,
735
+ "train_batch_size": 8,
736
+ "trial_name": null,
737
+ "trial_params": null
738
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-480/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-480/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-480/trainer_state.json ADDED
@@ -0,0 +1,753 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 6.4,
5
+ "eval_steps": 10,
6
+ "global_step": 480,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.9239799976348877,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.185,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.005242109298706,
576
+ "eval_runtime": 43.9141,
577
+ "eval_samples_per_second": 22.772,
578
+ "eval_steps_per_second": 2.846,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 2.4055938720703125,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.2093,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 2.0709946155548096,
591
+ "eval_runtime": 43.879,
592
+ "eval_samples_per_second": 22.79,
593
+ "eval_steps_per_second": 2.849,
594
+ "step": 390
595
+ },
596
+ {
597
+ "epoch": 5.333333333333333,
598
+ "grad_norm": 2.323967933654785,
599
+ "learning_rate": 3.259259259259259e-05,
600
+ "loss": 1.1375,
601
+ "step": 400
602
+ },
603
+ {
604
+ "epoch": 5.333333333333333,
605
+ "eval_loss": 2.0645956993103027,
606
+ "eval_runtime": 43.9369,
607
+ "eval_samples_per_second": 22.76,
608
+ "eval_steps_per_second": 2.845,
609
+ "step": 400
610
+ },
611
+ {
612
+ "epoch": 5.466666666666667,
613
+ "grad_norm": 2.261169910430908,
614
+ "learning_rate": 3.140740740740741e-05,
615
+ "loss": 1.1111,
616
+ "step": 410
617
+ },
618
+ {
619
+ "epoch": 5.466666666666667,
620
+ "eval_loss": 2.0542006492614746,
621
+ "eval_runtime": 43.9104,
622
+ "eval_samples_per_second": 22.774,
623
+ "eval_steps_per_second": 2.847,
624
+ "step": 410
625
+ },
626
+ {
627
+ "epoch": 5.6,
628
+ "grad_norm": 2.4246268272399902,
629
+ "learning_rate": 3.0222222222222225e-05,
630
+ "loss": 1.2143,
631
+ "step": 420
632
+ },
633
+ {
634
+ "epoch": 5.6,
635
+ "eval_loss": 2.067005157470703,
636
+ "eval_runtime": 43.8345,
637
+ "eval_samples_per_second": 22.813,
638
+ "eval_steps_per_second": 2.852,
639
+ "step": 420
640
+ },
641
+ {
642
+ "epoch": 5.733333333333333,
643
+ "grad_norm": 2.608240842819214,
644
+ "learning_rate": 2.9037037037037042e-05,
645
+ "loss": 1.1988,
646
+ "step": 430
647
+ },
648
+ {
649
+ "epoch": 5.733333333333333,
650
+ "eval_loss": 2.0488076210021973,
651
+ "eval_runtime": 43.8385,
652
+ "eval_samples_per_second": 22.811,
653
+ "eval_steps_per_second": 2.851,
654
+ "step": 430
655
+ },
656
+ {
657
+ "epoch": 5.866666666666667,
658
+ "grad_norm": 2.4107654094696045,
659
+ "learning_rate": 2.7851851851851856e-05,
660
+ "loss": 1.1931,
661
+ "step": 440
662
+ },
663
+ {
664
+ "epoch": 5.866666666666667,
665
+ "eval_loss": 2.0491933822631836,
666
+ "eval_runtime": 43.8329,
667
+ "eval_samples_per_second": 22.814,
668
+ "eval_steps_per_second": 2.852,
669
+ "step": 440
670
+ },
671
+ {
672
+ "epoch": 6.0,
673
+ "grad_norm": 2.361257553100586,
674
+ "learning_rate": 2.6666666666666667e-05,
675
+ "loss": 1.1842,
676
+ "step": 450
677
+ },
678
+ {
679
+ "epoch": 6.0,
680
+ "eval_loss": 2.0560381412506104,
681
+ "eval_runtime": 43.8412,
682
+ "eval_samples_per_second": 22.81,
683
+ "eval_steps_per_second": 2.851,
684
+ "step": 450
685
+ },
686
+ {
687
+ "epoch": 6.133333333333334,
688
+ "grad_norm": 2.489898920059204,
689
+ "learning_rate": 2.5481481481481484e-05,
690
+ "loss": 1.03,
691
+ "step": 460
692
+ },
693
+ {
694
+ "epoch": 6.133333333333334,
695
+ "eval_loss": 2.1300723552703857,
696
+ "eval_runtime": 43.8534,
697
+ "eval_samples_per_second": 22.803,
698
+ "eval_steps_per_second": 2.85,
699
+ "step": 460
700
+ },
701
+ {
702
+ "epoch": 6.266666666666667,
703
+ "grad_norm": 2.8632452487945557,
704
+ "learning_rate": 2.4296296296296298e-05,
705
+ "loss": 1.0839,
706
+ "step": 470
707
+ },
708
+ {
709
+ "epoch": 6.266666666666667,
710
+ "eval_loss": 2.1316983699798584,
711
+ "eval_runtime": 43.8685,
712
+ "eval_samples_per_second": 22.795,
713
+ "eval_steps_per_second": 2.849,
714
+ "step": 470
715
+ },
716
+ {
717
+ "epoch": 6.4,
718
+ "grad_norm": 2.717928647994995,
719
+ "learning_rate": 2.3111111111111112e-05,
720
+ "loss": 1.091,
721
+ "step": 480
722
+ },
723
+ {
724
+ "epoch": 6.4,
725
+ "eval_loss": 2.120175838470459,
726
+ "eval_runtime": 43.9488,
727
+ "eval_samples_per_second": 22.754,
728
+ "eval_steps_per_second": 2.844,
729
+ "step": 480
730
+ }
731
+ ],
732
+ "logging_steps": 10,
733
+ "max_steps": 675,
734
+ "num_input_tokens_seen": 0,
735
+ "num_train_epochs": 9,
736
+ "save_steps": 10,
737
+ "stateful_callbacks": {
738
+ "TrainerControl": {
739
+ "args": {
740
+ "should_epoch_stop": false,
741
+ "should_evaluate": false,
742
+ "should_log": false,
743
+ "should_save": true,
744
+ "should_training_stop": false
745
+ },
746
+ "attributes": {}
747
+ }
748
+ },
749
+ "total_flos": 7.86531455336448e+16,
750
+ "train_batch_size": 8,
751
+ "trial_name": null,
752
+ "trial_params": null
753
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-490/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-490/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-490/trainer_state.json ADDED
@@ -0,0 +1,768 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 6.533333333333333,
5
+ "eval_steps": 10,
6
+ "global_step": 490,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.9239799976348877,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.185,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.005242109298706,
576
+ "eval_runtime": 43.9141,
577
+ "eval_samples_per_second": 22.772,
578
+ "eval_steps_per_second": 2.846,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 2.4055938720703125,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.2093,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 2.0709946155548096,
591
+ "eval_runtime": 43.879,
592
+ "eval_samples_per_second": 22.79,
593
+ "eval_steps_per_second": 2.849,
594
+ "step": 390
595
+ },
596
+ {
597
+ "epoch": 5.333333333333333,
598
+ "grad_norm": 2.323967933654785,
599
+ "learning_rate": 3.259259259259259e-05,
600
+ "loss": 1.1375,
601
+ "step": 400
602
+ },
603
+ {
604
+ "epoch": 5.333333333333333,
605
+ "eval_loss": 2.0645956993103027,
606
+ "eval_runtime": 43.9369,
607
+ "eval_samples_per_second": 22.76,
608
+ "eval_steps_per_second": 2.845,
609
+ "step": 400
610
+ },
611
+ {
612
+ "epoch": 5.466666666666667,
613
+ "grad_norm": 2.261169910430908,
614
+ "learning_rate": 3.140740740740741e-05,
615
+ "loss": 1.1111,
616
+ "step": 410
617
+ },
618
+ {
619
+ "epoch": 5.466666666666667,
620
+ "eval_loss": 2.0542006492614746,
621
+ "eval_runtime": 43.9104,
622
+ "eval_samples_per_second": 22.774,
623
+ "eval_steps_per_second": 2.847,
624
+ "step": 410
625
+ },
626
+ {
627
+ "epoch": 5.6,
628
+ "grad_norm": 2.4246268272399902,
629
+ "learning_rate": 3.0222222222222225e-05,
630
+ "loss": 1.2143,
631
+ "step": 420
632
+ },
633
+ {
634
+ "epoch": 5.6,
635
+ "eval_loss": 2.067005157470703,
636
+ "eval_runtime": 43.8345,
637
+ "eval_samples_per_second": 22.813,
638
+ "eval_steps_per_second": 2.852,
639
+ "step": 420
640
+ },
641
+ {
642
+ "epoch": 5.733333333333333,
643
+ "grad_norm": 2.608240842819214,
644
+ "learning_rate": 2.9037037037037042e-05,
645
+ "loss": 1.1988,
646
+ "step": 430
647
+ },
648
+ {
649
+ "epoch": 5.733333333333333,
650
+ "eval_loss": 2.0488076210021973,
651
+ "eval_runtime": 43.8385,
652
+ "eval_samples_per_second": 22.811,
653
+ "eval_steps_per_second": 2.851,
654
+ "step": 430
655
+ },
656
+ {
657
+ "epoch": 5.866666666666667,
658
+ "grad_norm": 2.4107654094696045,
659
+ "learning_rate": 2.7851851851851856e-05,
660
+ "loss": 1.1931,
661
+ "step": 440
662
+ },
663
+ {
664
+ "epoch": 5.866666666666667,
665
+ "eval_loss": 2.0491933822631836,
666
+ "eval_runtime": 43.8329,
667
+ "eval_samples_per_second": 22.814,
668
+ "eval_steps_per_second": 2.852,
669
+ "step": 440
670
+ },
671
+ {
672
+ "epoch": 6.0,
673
+ "grad_norm": 2.361257553100586,
674
+ "learning_rate": 2.6666666666666667e-05,
675
+ "loss": 1.1842,
676
+ "step": 450
677
+ },
678
+ {
679
+ "epoch": 6.0,
680
+ "eval_loss": 2.0560381412506104,
681
+ "eval_runtime": 43.8412,
682
+ "eval_samples_per_second": 22.81,
683
+ "eval_steps_per_second": 2.851,
684
+ "step": 450
685
+ },
686
+ {
687
+ "epoch": 6.133333333333334,
688
+ "grad_norm": 2.489898920059204,
689
+ "learning_rate": 2.5481481481481484e-05,
690
+ "loss": 1.03,
691
+ "step": 460
692
+ },
693
+ {
694
+ "epoch": 6.133333333333334,
695
+ "eval_loss": 2.1300723552703857,
696
+ "eval_runtime": 43.8534,
697
+ "eval_samples_per_second": 22.803,
698
+ "eval_steps_per_second": 2.85,
699
+ "step": 460
700
+ },
701
+ {
702
+ "epoch": 6.266666666666667,
703
+ "grad_norm": 2.8632452487945557,
704
+ "learning_rate": 2.4296296296296298e-05,
705
+ "loss": 1.0839,
706
+ "step": 470
707
+ },
708
+ {
709
+ "epoch": 6.266666666666667,
710
+ "eval_loss": 2.1316983699798584,
711
+ "eval_runtime": 43.8685,
712
+ "eval_samples_per_second": 22.795,
713
+ "eval_steps_per_second": 2.849,
714
+ "step": 470
715
+ },
716
+ {
717
+ "epoch": 6.4,
718
+ "grad_norm": 2.717928647994995,
719
+ "learning_rate": 2.3111111111111112e-05,
720
+ "loss": 1.091,
721
+ "step": 480
722
+ },
723
+ {
724
+ "epoch": 6.4,
725
+ "eval_loss": 2.120175838470459,
726
+ "eval_runtime": 43.9488,
727
+ "eval_samples_per_second": 22.754,
728
+ "eval_steps_per_second": 2.844,
729
+ "step": 480
730
+ },
731
+ {
732
+ "epoch": 6.533333333333333,
733
+ "grad_norm": 3.3125128746032715,
734
+ "learning_rate": 2.192592592592593e-05,
735
+ "loss": 1.0854,
736
+ "step": 490
737
+ },
738
+ {
739
+ "epoch": 6.533333333333333,
740
+ "eval_loss": 2.1285061836242676,
741
+ "eval_runtime": 43.9747,
742
+ "eval_samples_per_second": 22.74,
743
+ "eval_steps_per_second": 2.843,
744
+ "step": 490
745
+ }
746
+ ],
747
+ "logging_steps": 10,
748
+ "max_steps": 675,
749
+ "num_input_tokens_seen": 0,
750
+ "num_train_epochs": 9,
751
+ "save_steps": 10,
752
+ "stateful_callbacks": {
753
+ "TrainerControl": {
754
+ "args": {
755
+ "should_epoch_stop": false,
756
+ "should_evaluate": false,
757
+ "should_log": false,
758
+ "should_save": true,
759
+ "should_training_stop": false
760
+ },
761
+ "attributes": {}
762
+ }
763
+ },
764
+ "total_flos": 8.02917527322624e+16,
765
+ "train_batch_size": 8,
766
+ "trial_name": null,
767
+ "trial_params": null
768
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-500/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-500/trainer_state.json ADDED
@@ -0,0 +1,783 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 6.666666666666667,
5
+ "eval_steps": 10,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.9239799976348877,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.185,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.005242109298706,
576
+ "eval_runtime": 43.9141,
577
+ "eval_samples_per_second": 22.772,
578
+ "eval_steps_per_second": 2.846,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 2.4055938720703125,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.2093,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 2.0709946155548096,
591
+ "eval_runtime": 43.879,
592
+ "eval_samples_per_second": 22.79,
593
+ "eval_steps_per_second": 2.849,
594
+ "step": 390
595
+ },
596
+ {
597
+ "epoch": 5.333333333333333,
598
+ "grad_norm": 2.323967933654785,
599
+ "learning_rate": 3.259259259259259e-05,
600
+ "loss": 1.1375,
601
+ "step": 400
602
+ },
603
+ {
604
+ "epoch": 5.333333333333333,
605
+ "eval_loss": 2.0645956993103027,
606
+ "eval_runtime": 43.9369,
607
+ "eval_samples_per_second": 22.76,
608
+ "eval_steps_per_second": 2.845,
609
+ "step": 400
610
+ },
611
+ {
612
+ "epoch": 5.466666666666667,
613
+ "grad_norm": 2.261169910430908,
614
+ "learning_rate": 3.140740740740741e-05,
615
+ "loss": 1.1111,
616
+ "step": 410
617
+ },
618
+ {
619
+ "epoch": 5.466666666666667,
620
+ "eval_loss": 2.0542006492614746,
621
+ "eval_runtime": 43.9104,
622
+ "eval_samples_per_second": 22.774,
623
+ "eval_steps_per_second": 2.847,
624
+ "step": 410
625
+ },
626
+ {
627
+ "epoch": 5.6,
628
+ "grad_norm": 2.4246268272399902,
629
+ "learning_rate": 3.0222222222222225e-05,
630
+ "loss": 1.2143,
631
+ "step": 420
632
+ },
633
+ {
634
+ "epoch": 5.6,
635
+ "eval_loss": 2.067005157470703,
636
+ "eval_runtime": 43.8345,
637
+ "eval_samples_per_second": 22.813,
638
+ "eval_steps_per_second": 2.852,
639
+ "step": 420
640
+ },
641
+ {
642
+ "epoch": 5.733333333333333,
643
+ "grad_norm": 2.608240842819214,
644
+ "learning_rate": 2.9037037037037042e-05,
645
+ "loss": 1.1988,
646
+ "step": 430
647
+ },
648
+ {
649
+ "epoch": 5.733333333333333,
650
+ "eval_loss": 2.0488076210021973,
651
+ "eval_runtime": 43.8385,
652
+ "eval_samples_per_second": 22.811,
653
+ "eval_steps_per_second": 2.851,
654
+ "step": 430
655
+ },
656
+ {
657
+ "epoch": 5.866666666666667,
658
+ "grad_norm": 2.4107654094696045,
659
+ "learning_rate": 2.7851851851851856e-05,
660
+ "loss": 1.1931,
661
+ "step": 440
662
+ },
663
+ {
664
+ "epoch": 5.866666666666667,
665
+ "eval_loss": 2.0491933822631836,
666
+ "eval_runtime": 43.8329,
667
+ "eval_samples_per_second": 22.814,
668
+ "eval_steps_per_second": 2.852,
669
+ "step": 440
670
+ },
671
+ {
672
+ "epoch": 6.0,
673
+ "grad_norm": 2.361257553100586,
674
+ "learning_rate": 2.6666666666666667e-05,
675
+ "loss": 1.1842,
676
+ "step": 450
677
+ },
678
+ {
679
+ "epoch": 6.0,
680
+ "eval_loss": 2.0560381412506104,
681
+ "eval_runtime": 43.8412,
682
+ "eval_samples_per_second": 22.81,
683
+ "eval_steps_per_second": 2.851,
684
+ "step": 450
685
+ },
686
+ {
687
+ "epoch": 6.133333333333334,
688
+ "grad_norm": 2.489898920059204,
689
+ "learning_rate": 2.5481481481481484e-05,
690
+ "loss": 1.03,
691
+ "step": 460
692
+ },
693
+ {
694
+ "epoch": 6.133333333333334,
695
+ "eval_loss": 2.1300723552703857,
696
+ "eval_runtime": 43.8534,
697
+ "eval_samples_per_second": 22.803,
698
+ "eval_steps_per_second": 2.85,
699
+ "step": 460
700
+ },
701
+ {
702
+ "epoch": 6.266666666666667,
703
+ "grad_norm": 2.8632452487945557,
704
+ "learning_rate": 2.4296296296296298e-05,
705
+ "loss": 1.0839,
706
+ "step": 470
707
+ },
708
+ {
709
+ "epoch": 6.266666666666667,
710
+ "eval_loss": 2.1316983699798584,
711
+ "eval_runtime": 43.8685,
712
+ "eval_samples_per_second": 22.795,
713
+ "eval_steps_per_second": 2.849,
714
+ "step": 470
715
+ },
716
+ {
717
+ "epoch": 6.4,
718
+ "grad_norm": 2.717928647994995,
719
+ "learning_rate": 2.3111111111111112e-05,
720
+ "loss": 1.091,
721
+ "step": 480
722
+ },
723
+ {
724
+ "epoch": 6.4,
725
+ "eval_loss": 2.120175838470459,
726
+ "eval_runtime": 43.9488,
727
+ "eval_samples_per_second": 22.754,
728
+ "eval_steps_per_second": 2.844,
729
+ "step": 480
730
+ },
731
+ {
732
+ "epoch": 6.533333333333333,
733
+ "grad_norm": 3.3125128746032715,
734
+ "learning_rate": 2.192592592592593e-05,
735
+ "loss": 1.0854,
736
+ "step": 490
737
+ },
738
+ {
739
+ "epoch": 6.533333333333333,
740
+ "eval_loss": 2.1285061836242676,
741
+ "eval_runtime": 43.9747,
742
+ "eval_samples_per_second": 22.74,
743
+ "eval_steps_per_second": 2.843,
744
+ "step": 490
745
+ },
746
+ {
747
+ "epoch": 6.666666666666667,
748
+ "grad_norm": 2.6968960762023926,
749
+ "learning_rate": 2.074074074074074e-05,
750
+ "loss": 1.1471,
751
+ "step": 500
752
+ },
753
+ {
754
+ "epoch": 6.666666666666667,
755
+ "eval_loss": 2.1307287216186523,
756
+ "eval_runtime": 43.9928,
757
+ "eval_samples_per_second": 22.731,
758
+ "eval_steps_per_second": 2.841,
759
+ "step": 500
760
+ }
761
+ ],
762
+ "logging_steps": 10,
763
+ "max_steps": 675,
764
+ "num_input_tokens_seen": 0,
765
+ "num_train_epochs": 9,
766
+ "save_steps": 10,
767
+ "stateful_callbacks": {
768
+ "TrainerControl": {
769
+ "args": {
770
+ "should_epoch_stop": false,
771
+ "should_evaluate": false,
772
+ "should_log": false,
773
+ "should_save": true,
774
+ "should_training_stop": false
775
+ },
776
+ "attributes": {}
777
+ }
778
+ },
779
+ "total_flos": 8.193035993088e+16,
780
+ "train_batch_size": 8,
781
+ "trial_name": null,
782
+ "trial_params": null
783
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-510/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-510/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-510/trainer_state.json ADDED
@@ -0,0 +1,798 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 6.8,
5
+ "eval_steps": 10,
6
+ "global_step": 510,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.9239799976348877,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.185,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.005242109298706,
576
+ "eval_runtime": 43.9141,
577
+ "eval_samples_per_second": 22.772,
578
+ "eval_steps_per_second": 2.846,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 2.4055938720703125,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.2093,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 2.0709946155548096,
591
+ "eval_runtime": 43.879,
592
+ "eval_samples_per_second": 22.79,
593
+ "eval_steps_per_second": 2.849,
594
+ "step": 390
595
+ },
596
+ {
597
+ "epoch": 5.333333333333333,
598
+ "grad_norm": 2.323967933654785,
599
+ "learning_rate": 3.259259259259259e-05,
600
+ "loss": 1.1375,
601
+ "step": 400
602
+ },
603
+ {
604
+ "epoch": 5.333333333333333,
605
+ "eval_loss": 2.0645956993103027,
606
+ "eval_runtime": 43.9369,
607
+ "eval_samples_per_second": 22.76,
608
+ "eval_steps_per_second": 2.845,
609
+ "step": 400
610
+ },
611
+ {
612
+ "epoch": 5.466666666666667,
613
+ "grad_norm": 2.261169910430908,
614
+ "learning_rate": 3.140740740740741e-05,
615
+ "loss": 1.1111,
616
+ "step": 410
617
+ },
618
+ {
619
+ "epoch": 5.466666666666667,
620
+ "eval_loss": 2.0542006492614746,
621
+ "eval_runtime": 43.9104,
622
+ "eval_samples_per_second": 22.774,
623
+ "eval_steps_per_second": 2.847,
624
+ "step": 410
625
+ },
626
+ {
627
+ "epoch": 5.6,
628
+ "grad_norm": 2.4246268272399902,
629
+ "learning_rate": 3.0222222222222225e-05,
630
+ "loss": 1.2143,
631
+ "step": 420
632
+ },
633
+ {
634
+ "epoch": 5.6,
635
+ "eval_loss": 2.067005157470703,
636
+ "eval_runtime": 43.8345,
637
+ "eval_samples_per_second": 22.813,
638
+ "eval_steps_per_second": 2.852,
639
+ "step": 420
640
+ },
641
+ {
642
+ "epoch": 5.733333333333333,
643
+ "grad_norm": 2.608240842819214,
644
+ "learning_rate": 2.9037037037037042e-05,
645
+ "loss": 1.1988,
646
+ "step": 430
647
+ },
648
+ {
649
+ "epoch": 5.733333333333333,
650
+ "eval_loss": 2.0488076210021973,
651
+ "eval_runtime": 43.8385,
652
+ "eval_samples_per_second": 22.811,
653
+ "eval_steps_per_second": 2.851,
654
+ "step": 430
655
+ },
656
+ {
657
+ "epoch": 5.866666666666667,
658
+ "grad_norm": 2.4107654094696045,
659
+ "learning_rate": 2.7851851851851856e-05,
660
+ "loss": 1.1931,
661
+ "step": 440
662
+ },
663
+ {
664
+ "epoch": 5.866666666666667,
665
+ "eval_loss": 2.0491933822631836,
666
+ "eval_runtime": 43.8329,
667
+ "eval_samples_per_second": 22.814,
668
+ "eval_steps_per_second": 2.852,
669
+ "step": 440
670
+ },
671
+ {
672
+ "epoch": 6.0,
673
+ "grad_norm": 2.361257553100586,
674
+ "learning_rate": 2.6666666666666667e-05,
675
+ "loss": 1.1842,
676
+ "step": 450
677
+ },
678
+ {
679
+ "epoch": 6.0,
680
+ "eval_loss": 2.0560381412506104,
681
+ "eval_runtime": 43.8412,
682
+ "eval_samples_per_second": 22.81,
683
+ "eval_steps_per_second": 2.851,
684
+ "step": 450
685
+ },
686
+ {
687
+ "epoch": 6.133333333333334,
688
+ "grad_norm": 2.489898920059204,
689
+ "learning_rate": 2.5481481481481484e-05,
690
+ "loss": 1.03,
691
+ "step": 460
692
+ },
693
+ {
694
+ "epoch": 6.133333333333334,
695
+ "eval_loss": 2.1300723552703857,
696
+ "eval_runtime": 43.8534,
697
+ "eval_samples_per_second": 22.803,
698
+ "eval_steps_per_second": 2.85,
699
+ "step": 460
700
+ },
701
+ {
702
+ "epoch": 6.266666666666667,
703
+ "grad_norm": 2.8632452487945557,
704
+ "learning_rate": 2.4296296296296298e-05,
705
+ "loss": 1.0839,
706
+ "step": 470
707
+ },
708
+ {
709
+ "epoch": 6.266666666666667,
710
+ "eval_loss": 2.1316983699798584,
711
+ "eval_runtime": 43.8685,
712
+ "eval_samples_per_second": 22.795,
713
+ "eval_steps_per_second": 2.849,
714
+ "step": 470
715
+ },
716
+ {
717
+ "epoch": 6.4,
718
+ "grad_norm": 2.717928647994995,
719
+ "learning_rate": 2.3111111111111112e-05,
720
+ "loss": 1.091,
721
+ "step": 480
722
+ },
723
+ {
724
+ "epoch": 6.4,
725
+ "eval_loss": 2.120175838470459,
726
+ "eval_runtime": 43.9488,
727
+ "eval_samples_per_second": 22.754,
728
+ "eval_steps_per_second": 2.844,
729
+ "step": 480
730
+ },
731
+ {
732
+ "epoch": 6.533333333333333,
733
+ "grad_norm": 3.3125128746032715,
734
+ "learning_rate": 2.192592592592593e-05,
735
+ "loss": 1.0854,
736
+ "step": 490
737
+ },
738
+ {
739
+ "epoch": 6.533333333333333,
740
+ "eval_loss": 2.1285061836242676,
741
+ "eval_runtime": 43.9747,
742
+ "eval_samples_per_second": 22.74,
743
+ "eval_steps_per_second": 2.843,
744
+ "step": 490
745
+ },
746
+ {
747
+ "epoch": 6.666666666666667,
748
+ "grad_norm": 2.6968960762023926,
749
+ "learning_rate": 2.074074074074074e-05,
750
+ "loss": 1.1471,
751
+ "step": 500
752
+ },
753
+ {
754
+ "epoch": 6.666666666666667,
755
+ "eval_loss": 2.1307287216186523,
756
+ "eval_runtime": 43.9928,
757
+ "eval_samples_per_second": 22.731,
758
+ "eval_steps_per_second": 2.841,
759
+ "step": 500
760
+ },
761
+ {
762
+ "epoch": 6.8,
763
+ "grad_norm": 2.4506139755249023,
764
+ "learning_rate": 1.9555555555555557e-05,
765
+ "loss": 1.0523,
766
+ "step": 510
767
+ },
768
+ {
769
+ "epoch": 6.8,
770
+ "eval_loss": 2.12712025642395,
771
+ "eval_runtime": 43.9835,
772
+ "eval_samples_per_second": 22.736,
773
+ "eval_steps_per_second": 2.842,
774
+ "step": 510
775
+ }
776
+ ],
777
+ "logging_steps": 10,
778
+ "max_steps": 675,
779
+ "num_input_tokens_seen": 0,
780
+ "num_train_epochs": 9,
781
+ "save_steps": 10,
782
+ "stateful_callbacks": {
783
+ "TrainerControl": {
784
+ "args": {
785
+ "should_epoch_stop": false,
786
+ "should_evaluate": false,
787
+ "should_log": false,
788
+ "should_save": true,
789
+ "should_training_stop": false
790
+ },
791
+ "attributes": {}
792
+ }
793
+ },
794
+ "total_flos": 8.35689671294976e+16,
795
+ "train_batch_size": 8,
796
+ "trial_name": null,
797
+ "trial_params": null
798
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-520/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-520/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "dense_4h_to_h",
25
+ "query_key_value",
26
+ "dense_h_to_4h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-520/trainer_state.json ADDED
@@ -0,0 +1,813 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.7508132457733154,
3
+ "best_model_checkpoint": "./output_ft_more_layers_freelaw_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-freelaw-8e-05/checkpoint-80",
4
+ "epoch": 6.933333333333334,
5
+ "eval_steps": 10,
6
+ "global_step": 520,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.3951323926448822,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.8421,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.7700647115707397,
21
+ "eval_runtime": 43.86,
22
+ "eval_samples_per_second": 22.8,
23
+ "eval_steps_per_second": 2.85,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.3800930380821228,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.7715,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.7666271924972534,
36
+ "eval_runtime": 43.8435,
37
+ "eval_samples_per_second": 22.808,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3974359333515167,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.7799,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.7623893022537231,
51
+ "eval_runtime": 43.863,
52
+ "eval_samples_per_second": 22.798,
53
+ "eval_steps_per_second": 2.85,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.37877357006073,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.7416,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.7585530281066895,
66
+ "eval_runtime": 43.8506,
67
+ "eval_samples_per_second": 22.805,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.3691335618495941,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.754,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.7555732727050781,
81
+ "eval_runtime": 43.8591,
82
+ "eval_samples_per_second": 22.8,
83
+ "eval_steps_per_second": 2.85,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3394964337348938,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.639,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.7534734010696411,
96
+ "eval_runtime": 43.8608,
97
+ "eval_samples_per_second": 22.799,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.317234069108963,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.7729,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.7515993118286133,
111
+ "eval_runtime": 43.8388,
112
+ "eval_samples_per_second": 22.811,
113
+ "eval_steps_per_second": 2.851,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.3309251666069031,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.8009,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.7508132457733154,
126
+ "eval_runtime": 43.8535,
127
+ "eval_samples_per_second": 22.803,
128
+ "eval_steps_per_second": 2.85,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.4126473367214203,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.6602,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.753326177597046,
141
+ "eval_runtime": 43.86,
142
+ "eval_samples_per_second": 22.8,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.5640483498573303,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.5879,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.7581162452697754,
156
+ "eval_runtime": 43.8488,
157
+ "eval_samples_per_second": 22.806,
158
+ "eval_steps_per_second": 2.851,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.6418269276618958,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.7067,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.7590935230255127,
171
+ "eval_runtime": 43.8372,
172
+ "eval_samples_per_second": 22.812,
173
+ "eval_steps_per_second": 2.851,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.603199303150177,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.7311,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.760871410369873,
186
+ "eval_runtime": 43.828,
187
+ "eval_samples_per_second": 22.816,
188
+ "eval_steps_per_second": 2.852,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.7207424640655518,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.7103,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.761257529258728,
201
+ "eval_runtime": 43.8422,
202
+ "eval_samples_per_second": 22.809,
203
+ "eval_steps_per_second": 2.851,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.6793868541717529,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.6574,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.7610187530517578,
216
+ "eval_runtime": 43.8261,
217
+ "eval_samples_per_second": 22.817,
218
+ "eval_steps_per_second": 2.852,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.7147842049598694,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.6357,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.763314962387085,
231
+ "eval_runtime": 43.8315,
232
+ "eval_samples_per_second": 22.815,
233
+ "eval_steps_per_second": 2.852,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.8159098625183105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.62,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.7846354246139526,
246
+ "eval_runtime": 43.8212,
247
+ "eval_samples_per_second": 22.82,
248
+ "eval_steps_per_second": 2.853,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 1.0052918195724487,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.5109,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.8005082607269287,
261
+ "eval_runtime": 43.8314,
262
+ "eval_samples_per_second": 22.815,
263
+ "eval_steps_per_second": 2.852,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 1.089106559753418,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.5658,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.8088901042938232,
276
+ "eval_runtime": 43.8245,
277
+ "eval_samples_per_second": 22.818,
278
+ "eval_steps_per_second": 2.852,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 1.1667160987854004,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.6316,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.8114306926727295,
291
+ "eval_runtime": 43.8195,
292
+ "eval_samples_per_second": 22.821,
293
+ "eval_steps_per_second": 2.853,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 1.215566873550415,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.4806,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.811687707901001,
306
+ "eval_runtime": 43.8494,
307
+ "eval_samples_per_second": 22.805,
308
+ "eval_steps_per_second": 2.851,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 1.1638202667236328,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.5345,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.8096415996551514,
321
+ "eval_runtime": 43.8206,
322
+ "eval_samples_per_second": 22.82,
323
+ "eval_steps_per_second": 2.853,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 1.2765487432479858,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.6074,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.810752034187317,
336
+ "eval_runtime": 43.8178,
337
+ "eval_samples_per_second": 22.822,
338
+ "eval_steps_per_second": 2.853,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 1.4451857805252075,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.5139,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.8353334665298462,
351
+ "eval_runtime": 43.831,
352
+ "eval_samples_per_second": 22.815,
353
+ "eval_steps_per_second": 2.852,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 1.697195291519165,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.3564,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.8831367492675781,
366
+ "eval_runtime": 43.8285,
367
+ "eval_samples_per_second": 22.816,
368
+ "eval_steps_per_second": 2.852,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 1.650194525718689,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.3952,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.8923019170761108,
381
+ "eval_runtime": 43.8237,
382
+ "eval_samples_per_second": 22.819,
383
+ "eval_steps_per_second": 2.852,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 1.7771501541137695,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.2664,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.8947919607162476,
396
+ "eval_runtime": 43.851,
397
+ "eval_samples_per_second": 22.804,
398
+ "eval_steps_per_second": 2.851,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 1.5858917236328125,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.4785,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.8847408294677734,
411
+ "eval_runtime": 43.8427,
412
+ "eval_samples_per_second": 22.809,
413
+ "eval_steps_per_second": 2.851,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 1.738616704940796,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.4324,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.8960140943527222,
426
+ "eval_runtime": 43.844,
427
+ "eval_samples_per_second": 22.808,
428
+ "eval_steps_per_second": 2.851,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 1.6031432151794434,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.4623,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.8914765119552612,
441
+ "eval_runtime": 43.8505,
442
+ "eval_samples_per_second": 22.805,
443
+ "eval_steps_per_second": 2.851,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 1.683716893196106,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.3815,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.89323890209198,
456
+ "eval_runtime": 43.8304,
457
+ "eval_samples_per_second": 22.815,
458
+ "eval_steps_per_second": 2.852,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.832708477973938,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.2467,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.9707167148590088,
471
+ "eval_runtime": 43.8554,
472
+ "eval_samples_per_second": 22.802,
473
+ "eval_steps_per_second": 2.85,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 1.9778881072998047,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.3088,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.980672836303711,
486
+ "eval_runtime": 43.8963,
487
+ "eval_samples_per_second": 22.781,
488
+ "eval_steps_per_second": 2.848,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.989790678024292,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.2894,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.9843915700912476,
501
+ "eval_runtime": 43.8339,
502
+ "eval_samples_per_second": 22.813,
503
+ "eval_steps_per_second": 2.852,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 2.0734732151031494,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.2478,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.9802476167678833,
516
+ "eval_runtime": 43.8578,
517
+ "eval_samples_per_second": 22.801,
518
+ "eval_steps_per_second": 2.85,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 1.9041788578033447,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.2407,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.9780033826828003,
531
+ "eval_runtime": 43.9861,
532
+ "eval_samples_per_second": 22.734,
533
+ "eval_steps_per_second": 2.842,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 2.1124303340911865,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.3693,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.969381332397461,
546
+ "eval_runtime": 43.839,
547
+ "eval_samples_per_second": 22.811,
548
+ "eval_steps_per_second": 2.851,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 2.050884246826172,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.2788,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.9740606546401978,
561
+ "eval_runtime": 43.9071,
562
+ "eval_samples_per_second": 22.775,
563
+ "eval_steps_per_second": 2.847,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.9239799976348877,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.185,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 2.005242109298706,
576
+ "eval_runtime": 43.9141,
577
+ "eval_samples_per_second": 22.772,
578
+ "eval_steps_per_second": 2.846,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 2.4055938720703125,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.2093,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 2.0709946155548096,
591
+ "eval_runtime": 43.879,
592
+ "eval_samples_per_second": 22.79,
593
+ "eval_steps_per_second": 2.849,
594
+ "step": 390
595
+ },
596
+ {
597
+ "epoch": 5.333333333333333,
598
+ "grad_norm": 2.323967933654785,
599
+ "learning_rate": 3.259259259259259e-05,
600
+ "loss": 1.1375,
601
+ "step": 400
602
+ },
603
+ {
604
+ "epoch": 5.333333333333333,
605
+ "eval_loss": 2.0645956993103027,
606
+ "eval_runtime": 43.9369,
607
+ "eval_samples_per_second": 22.76,
608
+ "eval_steps_per_second": 2.845,
609
+ "step": 400
610
+ },
611
+ {
612
+ "epoch": 5.466666666666667,
613
+ "grad_norm": 2.261169910430908,
614
+ "learning_rate": 3.140740740740741e-05,
615
+ "loss": 1.1111,
616
+ "step": 410
617
+ },
618
+ {
619
+ "epoch": 5.466666666666667,
620
+ "eval_loss": 2.0542006492614746,
621
+ "eval_runtime": 43.9104,
622
+ "eval_samples_per_second": 22.774,
623
+ "eval_steps_per_second": 2.847,
624
+ "step": 410
625
+ },
626
+ {
627
+ "epoch": 5.6,
628
+ "grad_norm": 2.4246268272399902,
629
+ "learning_rate": 3.0222222222222225e-05,
630
+ "loss": 1.2143,
631
+ "step": 420
632
+ },
633
+ {
634
+ "epoch": 5.6,
635
+ "eval_loss": 2.067005157470703,
636
+ "eval_runtime": 43.8345,
637
+ "eval_samples_per_second": 22.813,
638
+ "eval_steps_per_second": 2.852,
639
+ "step": 420
640
+ },
641
+ {
642
+ "epoch": 5.733333333333333,
643
+ "grad_norm": 2.608240842819214,
644
+ "learning_rate": 2.9037037037037042e-05,
645
+ "loss": 1.1988,
646
+ "step": 430
647
+ },
648
+ {
649
+ "epoch": 5.733333333333333,
650
+ "eval_loss": 2.0488076210021973,
651
+ "eval_runtime": 43.8385,
652
+ "eval_samples_per_second": 22.811,
653
+ "eval_steps_per_second": 2.851,
654
+ "step": 430
655
+ },
656
+ {
657
+ "epoch": 5.866666666666667,
658
+ "grad_norm": 2.4107654094696045,
659
+ "learning_rate": 2.7851851851851856e-05,
660
+ "loss": 1.1931,
661
+ "step": 440
662
+ },
663
+ {
664
+ "epoch": 5.866666666666667,
665
+ "eval_loss": 2.0491933822631836,
666
+ "eval_runtime": 43.8329,
667
+ "eval_samples_per_second": 22.814,
668
+ "eval_steps_per_second": 2.852,
669
+ "step": 440
670
+ },
671
+ {
672
+ "epoch": 6.0,
673
+ "grad_norm": 2.361257553100586,
674
+ "learning_rate": 2.6666666666666667e-05,
675
+ "loss": 1.1842,
676
+ "step": 450
677
+ },
678
+ {
679
+ "epoch": 6.0,
680
+ "eval_loss": 2.0560381412506104,
681
+ "eval_runtime": 43.8412,
682
+ "eval_samples_per_second": 22.81,
683
+ "eval_steps_per_second": 2.851,
684
+ "step": 450
685
+ },
686
+ {
687
+ "epoch": 6.133333333333334,
688
+ "grad_norm": 2.489898920059204,
689
+ "learning_rate": 2.5481481481481484e-05,
690
+ "loss": 1.03,
691
+ "step": 460
692
+ },
693
+ {
694
+ "epoch": 6.133333333333334,
695
+ "eval_loss": 2.1300723552703857,
696
+ "eval_runtime": 43.8534,
697
+ "eval_samples_per_second": 22.803,
698
+ "eval_steps_per_second": 2.85,
699
+ "step": 460
700
+ },
701
+ {
702
+ "epoch": 6.266666666666667,
703
+ "grad_norm": 2.8632452487945557,
704
+ "learning_rate": 2.4296296296296298e-05,
705
+ "loss": 1.0839,
706
+ "step": 470
707
+ },
708
+ {
709
+ "epoch": 6.266666666666667,
710
+ "eval_loss": 2.1316983699798584,
711
+ "eval_runtime": 43.8685,
712
+ "eval_samples_per_second": 22.795,
713
+ "eval_steps_per_second": 2.849,
714
+ "step": 470
715
+ },
716
+ {
717
+ "epoch": 6.4,
718
+ "grad_norm": 2.717928647994995,
719
+ "learning_rate": 2.3111111111111112e-05,
720
+ "loss": 1.091,
721
+ "step": 480
722
+ },
723
+ {
724
+ "epoch": 6.4,
725
+ "eval_loss": 2.120175838470459,
726
+ "eval_runtime": 43.9488,
727
+ "eval_samples_per_second": 22.754,
728
+ "eval_steps_per_second": 2.844,
729
+ "step": 480
730
+ },
731
+ {
732
+ "epoch": 6.533333333333333,
733
+ "grad_norm": 3.3125128746032715,
734
+ "learning_rate": 2.192592592592593e-05,
735
+ "loss": 1.0854,
736
+ "step": 490
737
+ },
738
+ {
739
+ "epoch": 6.533333333333333,
740
+ "eval_loss": 2.1285061836242676,
741
+ "eval_runtime": 43.9747,
742
+ "eval_samples_per_second": 22.74,
743
+ "eval_steps_per_second": 2.843,
744
+ "step": 490
745
+ },
746
+ {
747
+ "epoch": 6.666666666666667,
748
+ "grad_norm": 2.6968960762023926,
749
+ "learning_rate": 2.074074074074074e-05,
750
+ "loss": 1.1471,
751
+ "step": 500
752
+ },
753
+ {
754
+ "epoch": 6.666666666666667,
755
+ "eval_loss": 2.1307287216186523,
756
+ "eval_runtime": 43.9928,
757
+ "eval_samples_per_second": 22.731,
758
+ "eval_steps_per_second": 2.841,
759
+ "step": 500
760
+ },
761
+ {
762
+ "epoch": 6.8,
763
+ "grad_norm": 2.4506139755249023,
764
+ "learning_rate": 1.9555555555555557e-05,
765
+ "loss": 1.0523,
766
+ "step": 510
767
+ },
768
+ {
769
+ "epoch": 6.8,
770
+ "eval_loss": 2.12712025642395,
771
+ "eval_runtime": 43.9835,
772
+ "eval_samples_per_second": 22.736,
773
+ "eval_steps_per_second": 2.842,
774
+ "step": 510
775
+ },
776
+ {
777
+ "epoch": 6.933333333333334,
778
+ "grad_norm": 3.0378191471099854,
779
+ "learning_rate": 1.837037037037037e-05,
780
+ "loss": 1.0941,
781
+ "step": 520
782
+ },
783
+ {
784
+ "epoch": 6.933333333333334,
785
+ "eval_loss": 2.1212098598480225,
786
+ "eval_runtime": 43.8756,
787
+ "eval_samples_per_second": 22.792,
788
+ "eval_steps_per_second": 2.849,
789
+ "step": 520
790
+ }
791
+ ],
792
+ "logging_steps": 10,
793
+ "max_steps": 675,
794
+ "num_input_tokens_seen": 0,
795
+ "num_train_epochs": 9,
796
+ "save_steps": 10,
797
+ "stateful_callbacks": {
798
+ "TrainerControl": {
799
+ "args": {
800
+ "should_epoch_stop": false,
801
+ "should_evaluate": false,
802
+ "should_log": false,
803
+ "should_save": true,
804
+ "should_training_stop": false
805
+ },
806
+ "attributes": {}
807
+ }
808
+ },
809
+ "total_flos": 8.52075743281152e+16,
810
+ "train_batch_size": 8,
811
+ "trial_name": null,
812
+ "trial_params": null
813
+ }