bxiong commited on
Commit
7ba56d9
·
verified ·
1 Parent(s): e6009f0

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-540/adapter_model.safetensors +3 -0
  2. output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-290/adapter_model.safetensors +3 -0
  3. output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-675/adapter_model.safetensors +3 -0
  4. output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-660/adapter_model.safetensors +3 -0
  5. output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-320/adapter_model.safetensors +3 -0
  6. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-250/trainer_state.json +408 -0
  7. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-260/README.md +202 -0
  8. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-260/adapter_config.json +31 -0
  9. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-260/trainer_state.json +423 -0
  10. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-270/README.md +202 -0
  11. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-270/adapter_config.json +31 -0
  12. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-270/trainer_state.json +438 -0
  13. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-280/README.md +202 -0
  14. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-280/adapter_config.json +31 -0
  15. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-280/trainer_state.json +453 -0
  16. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-290/README.md +202 -0
  17. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-290/adapter_config.json +31 -0
  18. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-290/trainer_state.json +468 -0
  19. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-300/README.md +202 -0
  20. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-300/adapter_config.json +31 -0
  21. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-300/trainer_state.json +483 -0
  22. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-310/README.md +202 -0
  23. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-310/adapter_config.json +31 -0
  24. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-310/trainer_state.json +498 -0
  25. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-320/README.md +202 -0
  26. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-320/adapter_config.json +31 -0
  27. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-320/trainer_state.json +513 -0
  28. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-330/README.md +202 -0
  29. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-330/adapter_config.json +31 -0
  30. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-330/trainer_state.json +528 -0
  31. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-340/README.md +202 -0
  32. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-340/adapter_config.json +31 -0
  33. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-340/trainer_state.json +543 -0
  34. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-350/README.md +202 -0
  35. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-350/adapter_config.json +31 -0
  36. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-350/trainer_state.json +558 -0
  37. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-360/README.md +202 -0
  38. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-360/adapter_config.json +31 -0
  39. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-360/trainer_state.json +573 -0
  40. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-370/README.md +202 -0
  41. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-370/adapter_config.json +31 -0
  42. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-370/trainer_state.json +588 -0
  43. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-380/README.md +202 -0
  44. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-380/adapter_config.json +31 -0
  45. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-380/trainer_state.json +603 -0
  46. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-390/README.md +202 -0
  47. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-390/adapter_config.json +31 -0
  48. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-390/trainer_state.json +618 -0
  49. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-400/README.md +202 -0
  50. output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-400/adapter_config.json +31 -0
output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-540/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d29222ac3f3fa513bacd1245deaa16d781e9f0c1dcee2e3f7a853b262252fb5f
3
+ size 67144544
output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-290/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a73cce5dd1be3d6c0200bc9d747cc7ce6d3d45a917ebe81cfaec65a64fc6cdc
3
+ size 67144544
output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-675/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:445316158457ca094eed5471f00e77cce05ea294e2de51e42c30772ccac295b0
3
+ size 67144544
output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-660/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dacab1dc80e2ce118ab37a4ae3e8962eec64e67d70f7a09dc49b7b7ac5fade2c
3
+ size 67144544
output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-320/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:001a5171cbc5098faa66b014357360fcedebb3b99dd82087cc8cec2e670550bc
3
+ size 67144544
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-250/trainer_state.json ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 3.3333333333333335,
5
+ "eval_steps": 10,
6
+ "global_step": 250,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 0.49251970648765564,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.1196,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.2419582605361938,
321
+ "eval_runtime": 44.1478,
322
+ "eval_samples_per_second": 22.651,
323
+ "eval_steps_per_second": 2.831,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 0.5216273069381714,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.1375,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.2372699975967407,
336
+ "eval_runtime": 44.195,
337
+ "eval_samples_per_second": 22.627,
338
+ "eval_steps_per_second": 2.828,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 0.4238261580467224,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.1573,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.2556878328323364,
351
+ "eval_runtime": 44.2342,
352
+ "eval_samples_per_second": 22.607,
353
+ "eval_steps_per_second": 2.826,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 0.72156822681427,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.0865,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.2621344327926636,
366
+ "eval_runtime": 44.2027,
367
+ "eval_samples_per_second": 22.623,
368
+ "eval_steps_per_second": 2.828,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 0.5642262101173401,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.0993,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.2770243883132935,
381
+ "eval_runtime": 44.0511,
382
+ "eval_samples_per_second": 22.701,
383
+ "eval_steps_per_second": 2.838,
384
+ "step": 250
385
+ }
386
+ ],
387
+ "logging_steps": 10,
388
+ "max_steps": 675,
389
+ "num_input_tokens_seen": 0,
390
+ "num_train_epochs": 9,
391
+ "save_steps": 10,
392
+ "stateful_callbacks": {
393
+ "TrainerControl": {
394
+ "args": {
395
+ "should_epoch_stop": false,
396
+ "should_evaluate": false,
397
+ "should_log": false,
398
+ "should_save": true,
399
+ "should_training_stop": false
400
+ },
401
+ "attributes": {}
402
+ }
403
+ },
404
+ "total_flos": 4.096517996544e+16,
405
+ "train_batch_size": 8,
406
+ "trial_name": null,
407
+ "trial_params": null
408
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-260/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-260/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-260/trainer_state.json ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 3.466666666666667,
5
+ "eval_steps": 10,
6
+ "global_step": 260,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 0.49251970648765564,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.1196,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.2419582605361938,
321
+ "eval_runtime": 44.1478,
322
+ "eval_samples_per_second": 22.651,
323
+ "eval_steps_per_second": 2.831,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 0.5216273069381714,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.1375,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.2372699975967407,
336
+ "eval_runtime": 44.195,
337
+ "eval_samples_per_second": 22.627,
338
+ "eval_steps_per_second": 2.828,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 0.4238261580467224,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.1573,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.2556878328323364,
351
+ "eval_runtime": 44.2342,
352
+ "eval_samples_per_second": 22.607,
353
+ "eval_steps_per_second": 2.826,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 0.72156822681427,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.0865,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.2621344327926636,
366
+ "eval_runtime": 44.2027,
367
+ "eval_samples_per_second": 22.623,
368
+ "eval_steps_per_second": 2.828,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 0.5642262101173401,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.0993,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.2770243883132935,
381
+ "eval_runtime": 44.0511,
382
+ "eval_samples_per_second": 22.701,
383
+ "eval_steps_per_second": 2.838,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 0.7814852595329285,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.0989,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.2699764966964722,
396
+ "eval_runtime": 44.1962,
397
+ "eval_samples_per_second": 22.626,
398
+ "eval_steps_per_second": 2.828,
399
+ "step": 260
400
+ }
401
+ ],
402
+ "logging_steps": 10,
403
+ "max_steps": 675,
404
+ "num_input_tokens_seen": 0,
405
+ "num_train_epochs": 9,
406
+ "save_steps": 10,
407
+ "stateful_callbacks": {
408
+ "TrainerControl": {
409
+ "args": {
410
+ "should_epoch_stop": false,
411
+ "should_evaluate": false,
412
+ "should_log": false,
413
+ "should_save": true,
414
+ "should_training_stop": false
415
+ },
416
+ "attributes": {}
417
+ }
418
+ },
419
+ "total_flos": 4.26037871640576e+16,
420
+ "train_batch_size": 8,
421
+ "trial_name": null,
422
+ "trial_params": null
423
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-270/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-270/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-270/trainer_state.json ADDED
@@ -0,0 +1,438 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 3.6,
5
+ "eval_steps": 10,
6
+ "global_step": 270,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 0.49251970648765564,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.1196,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.2419582605361938,
321
+ "eval_runtime": 44.1478,
322
+ "eval_samples_per_second": 22.651,
323
+ "eval_steps_per_second": 2.831,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 0.5216273069381714,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.1375,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.2372699975967407,
336
+ "eval_runtime": 44.195,
337
+ "eval_samples_per_second": 22.627,
338
+ "eval_steps_per_second": 2.828,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 0.4238261580467224,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.1573,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.2556878328323364,
351
+ "eval_runtime": 44.2342,
352
+ "eval_samples_per_second": 22.607,
353
+ "eval_steps_per_second": 2.826,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 0.72156822681427,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.0865,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.2621344327926636,
366
+ "eval_runtime": 44.2027,
367
+ "eval_samples_per_second": 22.623,
368
+ "eval_steps_per_second": 2.828,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 0.5642262101173401,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.0993,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.2770243883132935,
381
+ "eval_runtime": 44.0511,
382
+ "eval_samples_per_second": 22.701,
383
+ "eval_steps_per_second": 2.838,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 0.7814852595329285,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.0989,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.2699764966964722,
396
+ "eval_runtime": 44.1962,
397
+ "eval_samples_per_second": 22.626,
398
+ "eval_steps_per_second": 2.828,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 0.698136031627655,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.1381,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.2810109853744507,
411
+ "eval_runtime": 44.084,
412
+ "eval_samples_per_second": 22.684,
413
+ "eval_steps_per_second": 2.835,
414
+ "step": 270
415
+ }
416
+ ],
417
+ "logging_steps": 10,
418
+ "max_steps": 675,
419
+ "num_input_tokens_seen": 0,
420
+ "num_train_epochs": 9,
421
+ "save_steps": 10,
422
+ "stateful_callbacks": {
423
+ "TrainerControl": {
424
+ "args": {
425
+ "should_epoch_stop": false,
426
+ "should_evaluate": false,
427
+ "should_log": false,
428
+ "should_save": true,
429
+ "should_training_stop": false
430
+ },
431
+ "attributes": {}
432
+ }
433
+ },
434
+ "total_flos": 4.42423943626752e+16,
435
+ "train_batch_size": 8,
436
+ "trial_name": null,
437
+ "trial_params": null
438
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-280/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-280/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-280/trainer_state.json ADDED
@@ -0,0 +1,453 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 3.7333333333333334,
5
+ "eval_steps": 10,
6
+ "global_step": 280,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 0.49251970648765564,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.1196,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.2419582605361938,
321
+ "eval_runtime": 44.1478,
322
+ "eval_samples_per_second": 22.651,
323
+ "eval_steps_per_second": 2.831,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 0.5216273069381714,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.1375,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.2372699975967407,
336
+ "eval_runtime": 44.195,
337
+ "eval_samples_per_second": 22.627,
338
+ "eval_steps_per_second": 2.828,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 0.4238261580467224,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.1573,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.2556878328323364,
351
+ "eval_runtime": 44.2342,
352
+ "eval_samples_per_second": 22.607,
353
+ "eval_steps_per_second": 2.826,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 0.72156822681427,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.0865,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.2621344327926636,
366
+ "eval_runtime": 44.2027,
367
+ "eval_samples_per_second": 22.623,
368
+ "eval_steps_per_second": 2.828,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 0.5642262101173401,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.0993,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.2770243883132935,
381
+ "eval_runtime": 44.0511,
382
+ "eval_samples_per_second": 22.701,
383
+ "eval_steps_per_second": 2.838,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 0.7814852595329285,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.0989,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.2699764966964722,
396
+ "eval_runtime": 44.1962,
397
+ "eval_samples_per_second": 22.626,
398
+ "eval_steps_per_second": 2.828,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 0.698136031627655,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.1381,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.2810109853744507,
411
+ "eval_runtime": 44.084,
412
+ "eval_samples_per_second": 22.684,
413
+ "eval_steps_per_second": 2.835,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 0.6332135796546936,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.0574,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.2708227634429932,
426
+ "eval_runtime": 43.9939,
427
+ "eval_samples_per_second": 22.73,
428
+ "eval_steps_per_second": 2.841,
429
+ "step": 280
430
+ }
431
+ ],
432
+ "logging_steps": 10,
433
+ "max_steps": 675,
434
+ "num_input_tokens_seen": 0,
435
+ "num_train_epochs": 9,
436
+ "save_steps": 10,
437
+ "stateful_callbacks": {
438
+ "TrainerControl": {
439
+ "args": {
440
+ "should_epoch_stop": false,
441
+ "should_evaluate": false,
442
+ "should_log": false,
443
+ "should_save": true,
444
+ "should_training_stop": false
445
+ },
446
+ "attributes": {}
447
+ }
448
+ },
449
+ "total_flos": 4.58810015612928e+16,
450
+ "train_batch_size": 8,
451
+ "trial_name": null,
452
+ "trial_params": null
453
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-290/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-290/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-290/trainer_state.json ADDED
@@ -0,0 +1,468 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 3.8666666666666667,
5
+ "eval_steps": 10,
6
+ "global_step": 290,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 0.49251970648765564,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.1196,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.2419582605361938,
321
+ "eval_runtime": 44.1478,
322
+ "eval_samples_per_second": 22.651,
323
+ "eval_steps_per_second": 2.831,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 0.5216273069381714,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.1375,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.2372699975967407,
336
+ "eval_runtime": 44.195,
337
+ "eval_samples_per_second": 22.627,
338
+ "eval_steps_per_second": 2.828,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 0.4238261580467224,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.1573,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.2556878328323364,
351
+ "eval_runtime": 44.2342,
352
+ "eval_samples_per_second": 22.607,
353
+ "eval_steps_per_second": 2.826,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 0.72156822681427,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.0865,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.2621344327926636,
366
+ "eval_runtime": 44.2027,
367
+ "eval_samples_per_second": 22.623,
368
+ "eval_steps_per_second": 2.828,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 0.5642262101173401,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.0993,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.2770243883132935,
381
+ "eval_runtime": 44.0511,
382
+ "eval_samples_per_second": 22.701,
383
+ "eval_steps_per_second": 2.838,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 0.7814852595329285,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.0989,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.2699764966964722,
396
+ "eval_runtime": 44.1962,
397
+ "eval_samples_per_second": 22.626,
398
+ "eval_steps_per_second": 2.828,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 0.698136031627655,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.1381,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.2810109853744507,
411
+ "eval_runtime": 44.084,
412
+ "eval_samples_per_second": 22.684,
413
+ "eval_steps_per_second": 2.835,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 0.6332135796546936,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.0574,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.2708227634429932,
426
+ "eval_runtime": 43.9939,
427
+ "eval_samples_per_second": 22.73,
428
+ "eval_steps_per_second": 2.841,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 0.9241636991500854,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.0944,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.2758972644805908,
441
+ "eval_runtime": 43.9816,
442
+ "eval_samples_per_second": 22.737,
443
+ "eval_steps_per_second": 2.842,
444
+ "step": 290
445
+ }
446
+ ],
447
+ "logging_steps": 10,
448
+ "max_steps": 675,
449
+ "num_input_tokens_seen": 0,
450
+ "num_train_epochs": 9,
451
+ "save_steps": 10,
452
+ "stateful_callbacks": {
453
+ "TrainerControl": {
454
+ "args": {
455
+ "should_epoch_stop": false,
456
+ "should_evaluate": false,
457
+ "should_log": false,
458
+ "should_save": true,
459
+ "should_training_stop": false
460
+ },
461
+ "attributes": {}
462
+ }
463
+ },
464
+ "total_flos": 4.75196087599104e+16,
465
+ "train_batch_size": 8,
466
+ "trial_name": null,
467
+ "trial_params": null
468
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-300/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-300/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-300/trainer_state.json ADDED
@@ -0,0 +1,483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 4.0,
5
+ "eval_steps": 10,
6
+ "global_step": 300,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 0.49251970648765564,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.1196,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.2419582605361938,
321
+ "eval_runtime": 44.1478,
322
+ "eval_samples_per_second": 22.651,
323
+ "eval_steps_per_second": 2.831,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 0.5216273069381714,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.1375,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.2372699975967407,
336
+ "eval_runtime": 44.195,
337
+ "eval_samples_per_second": 22.627,
338
+ "eval_steps_per_second": 2.828,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 0.4238261580467224,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.1573,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.2556878328323364,
351
+ "eval_runtime": 44.2342,
352
+ "eval_samples_per_second": 22.607,
353
+ "eval_steps_per_second": 2.826,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 0.72156822681427,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.0865,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.2621344327926636,
366
+ "eval_runtime": 44.2027,
367
+ "eval_samples_per_second": 22.623,
368
+ "eval_steps_per_second": 2.828,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 0.5642262101173401,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.0993,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.2770243883132935,
381
+ "eval_runtime": 44.0511,
382
+ "eval_samples_per_second": 22.701,
383
+ "eval_steps_per_second": 2.838,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 0.7814852595329285,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.0989,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.2699764966964722,
396
+ "eval_runtime": 44.1962,
397
+ "eval_samples_per_second": 22.626,
398
+ "eval_steps_per_second": 2.828,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 0.698136031627655,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.1381,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.2810109853744507,
411
+ "eval_runtime": 44.084,
412
+ "eval_samples_per_second": 22.684,
413
+ "eval_steps_per_second": 2.835,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 0.6332135796546936,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.0574,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.2708227634429932,
426
+ "eval_runtime": 43.9939,
427
+ "eval_samples_per_second": 22.73,
428
+ "eval_steps_per_second": 2.841,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 0.9241636991500854,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.0944,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.2758972644805908,
441
+ "eval_runtime": 43.9816,
442
+ "eval_samples_per_second": 22.737,
443
+ "eval_steps_per_second": 2.842,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 0.639854371547699,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.0468,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.271722674369812,
456
+ "eval_runtime": 44.0382,
457
+ "eval_samples_per_second": 22.708,
458
+ "eval_steps_per_second": 2.838,
459
+ "step": 300
460
+ }
461
+ ],
462
+ "logging_steps": 10,
463
+ "max_steps": 675,
464
+ "num_input_tokens_seen": 0,
465
+ "num_train_epochs": 9,
466
+ "save_steps": 10,
467
+ "stateful_callbacks": {
468
+ "TrainerControl": {
469
+ "args": {
470
+ "should_epoch_stop": false,
471
+ "should_evaluate": false,
472
+ "should_log": false,
473
+ "should_save": true,
474
+ "should_training_stop": false
475
+ },
476
+ "attributes": {}
477
+ }
478
+ },
479
+ "total_flos": 4.9158215958528e+16,
480
+ "train_batch_size": 8,
481
+ "trial_name": null,
482
+ "trial_params": null
483
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-310/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-310/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-310/trainer_state.json ADDED
@@ -0,0 +1,498 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 4.133333333333334,
5
+ "eval_steps": 10,
6
+ "global_step": 310,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 0.49251970648765564,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.1196,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.2419582605361938,
321
+ "eval_runtime": 44.1478,
322
+ "eval_samples_per_second": 22.651,
323
+ "eval_steps_per_second": 2.831,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 0.5216273069381714,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.1375,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.2372699975967407,
336
+ "eval_runtime": 44.195,
337
+ "eval_samples_per_second": 22.627,
338
+ "eval_steps_per_second": 2.828,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 0.4238261580467224,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.1573,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.2556878328323364,
351
+ "eval_runtime": 44.2342,
352
+ "eval_samples_per_second": 22.607,
353
+ "eval_steps_per_second": 2.826,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 0.72156822681427,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.0865,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.2621344327926636,
366
+ "eval_runtime": 44.2027,
367
+ "eval_samples_per_second": 22.623,
368
+ "eval_steps_per_second": 2.828,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 0.5642262101173401,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.0993,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.2770243883132935,
381
+ "eval_runtime": 44.0511,
382
+ "eval_samples_per_second": 22.701,
383
+ "eval_steps_per_second": 2.838,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 0.7814852595329285,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.0989,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.2699764966964722,
396
+ "eval_runtime": 44.1962,
397
+ "eval_samples_per_second": 22.626,
398
+ "eval_steps_per_second": 2.828,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 0.698136031627655,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.1381,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.2810109853744507,
411
+ "eval_runtime": 44.084,
412
+ "eval_samples_per_second": 22.684,
413
+ "eval_steps_per_second": 2.835,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 0.6332135796546936,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.0574,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.2708227634429932,
426
+ "eval_runtime": 43.9939,
427
+ "eval_samples_per_second": 22.73,
428
+ "eval_steps_per_second": 2.841,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 0.9241636991500854,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.0944,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.2758972644805908,
441
+ "eval_runtime": 43.9816,
442
+ "eval_samples_per_second": 22.737,
443
+ "eval_steps_per_second": 2.842,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 0.639854371547699,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.0468,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.271722674369812,
456
+ "eval_runtime": 44.0382,
457
+ "eval_samples_per_second": 22.708,
458
+ "eval_steps_per_second": 2.838,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.184584140777588,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.036,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.3531861305236816,
471
+ "eval_runtime": 44.1195,
472
+ "eval_samples_per_second": 22.666,
473
+ "eval_steps_per_second": 2.833,
474
+ "step": 310
475
+ }
476
+ ],
477
+ "logging_steps": 10,
478
+ "max_steps": 675,
479
+ "num_input_tokens_seen": 0,
480
+ "num_train_epochs": 9,
481
+ "save_steps": 10,
482
+ "stateful_callbacks": {
483
+ "TrainerControl": {
484
+ "args": {
485
+ "should_epoch_stop": false,
486
+ "should_evaluate": false,
487
+ "should_log": false,
488
+ "should_save": true,
489
+ "should_training_stop": false
490
+ },
491
+ "attributes": {}
492
+ }
493
+ },
494
+ "total_flos": 5.07968231571456e+16,
495
+ "train_batch_size": 8,
496
+ "trial_name": null,
497
+ "trial_params": null
498
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-320/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-320/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-320/trainer_state.json ADDED
@@ -0,0 +1,513 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 4.266666666666667,
5
+ "eval_steps": 10,
6
+ "global_step": 320,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 0.49251970648765564,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.1196,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.2419582605361938,
321
+ "eval_runtime": 44.1478,
322
+ "eval_samples_per_second": 22.651,
323
+ "eval_steps_per_second": 2.831,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 0.5216273069381714,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.1375,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.2372699975967407,
336
+ "eval_runtime": 44.195,
337
+ "eval_samples_per_second": 22.627,
338
+ "eval_steps_per_second": 2.828,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 0.4238261580467224,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.1573,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.2556878328323364,
351
+ "eval_runtime": 44.2342,
352
+ "eval_samples_per_second": 22.607,
353
+ "eval_steps_per_second": 2.826,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 0.72156822681427,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.0865,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.2621344327926636,
366
+ "eval_runtime": 44.2027,
367
+ "eval_samples_per_second": 22.623,
368
+ "eval_steps_per_second": 2.828,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 0.5642262101173401,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.0993,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.2770243883132935,
381
+ "eval_runtime": 44.0511,
382
+ "eval_samples_per_second": 22.701,
383
+ "eval_steps_per_second": 2.838,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 0.7814852595329285,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.0989,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.2699764966964722,
396
+ "eval_runtime": 44.1962,
397
+ "eval_samples_per_second": 22.626,
398
+ "eval_steps_per_second": 2.828,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 0.698136031627655,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.1381,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.2810109853744507,
411
+ "eval_runtime": 44.084,
412
+ "eval_samples_per_second": 22.684,
413
+ "eval_steps_per_second": 2.835,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 0.6332135796546936,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.0574,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.2708227634429932,
426
+ "eval_runtime": 43.9939,
427
+ "eval_samples_per_second": 22.73,
428
+ "eval_steps_per_second": 2.841,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 0.9241636991500854,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.0944,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.2758972644805908,
441
+ "eval_runtime": 43.9816,
442
+ "eval_samples_per_second": 22.737,
443
+ "eval_steps_per_second": 2.842,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 0.639854371547699,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.0468,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.271722674369812,
456
+ "eval_runtime": 44.0382,
457
+ "eval_samples_per_second": 22.708,
458
+ "eval_steps_per_second": 2.838,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.184584140777588,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.036,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.3531861305236816,
471
+ "eval_runtime": 44.1195,
472
+ "eval_samples_per_second": 22.666,
473
+ "eval_steps_per_second": 2.833,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 0.9589372873306274,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.0382,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.3156057596206665,
486
+ "eval_runtime": 43.996,
487
+ "eval_samples_per_second": 22.729,
488
+ "eval_steps_per_second": 2.841,
489
+ "step": 320
490
+ }
491
+ ],
492
+ "logging_steps": 10,
493
+ "max_steps": 675,
494
+ "num_input_tokens_seen": 0,
495
+ "num_train_epochs": 9,
496
+ "save_steps": 10,
497
+ "stateful_callbacks": {
498
+ "TrainerControl": {
499
+ "args": {
500
+ "should_epoch_stop": false,
501
+ "should_evaluate": false,
502
+ "should_log": false,
503
+ "should_save": true,
504
+ "should_training_stop": false
505
+ },
506
+ "attributes": {}
507
+ }
508
+ },
509
+ "total_flos": 5.24354303557632e+16,
510
+ "train_batch_size": 8,
511
+ "trial_name": null,
512
+ "trial_params": null
513
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-330/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-330/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-330/trainer_state.json ADDED
@@ -0,0 +1,528 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 4.4,
5
+ "eval_steps": 10,
6
+ "global_step": 330,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 0.49251970648765564,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.1196,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.2419582605361938,
321
+ "eval_runtime": 44.1478,
322
+ "eval_samples_per_second": 22.651,
323
+ "eval_steps_per_second": 2.831,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 0.5216273069381714,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.1375,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.2372699975967407,
336
+ "eval_runtime": 44.195,
337
+ "eval_samples_per_second": 22.627,
338
+ "eval_steps_per_second": 2.828,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 0.4238261580467224,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.1573,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.2556878328323364,
351
+ "eval_runtime": 44.2342,
352
+ "eval_samples_per_second": 22.607,
353
+ "eval_steps_per_second": 2.826,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 0.72156822681427,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.0865,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.2621344327926636,
366
+ "eval_runtime": 44.2027,
367
+ "eval_samples_per_second": 22.623,
368
+ "eval_steps_per_second": 2.828,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 0.5642262101173401,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.0993,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.2770243883132935,
381
+ "eval_runtime": 44.0511,
382
+ "eval_samples_per_second": 22.701,
383
+ "eval_steps_per_second": 2.838,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 0.7814852595329285,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.0989,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.2699764966964722,
396
+ "eval_runtime": 44.1962,
397
+ "eval_samples_per_second": 22.626,
398
+ "eval_steps_per_second": 2.828,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 0.698136031627655,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.1381,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.2810109853744507,
411
+ "eval_runtime": 44.084,
412
+ "eval_samples_per_second": 22.684,
413
+ "eval_steps_per_second": 2.835,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 0.6332135796546936,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.0574,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.2708227634429932,
426
+ "eval_runtime": 43.9939,
427
+ "eval_samples_per_second": 22.73,
428
+ "eval_steps_per_second": 2.841,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 0.9241636991500854,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.0944,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.2758972644805908,
441
+ "eval_runtime": 43.9816,
442
+ "eval_samples_per_second": 22.737,
443
+ "eval_steps_per_second": 2.842,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 0.639854371547699,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.0468,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.271722674369812,
456
+ "eval_runtime": 44.0382,
457
+ "eval_samples_per_second": 22.708,
458
+ "eval_steps_per_second": 2.838,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.184584140777588,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.036,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.3531861305236816,
471
+ "eval_runtime": 44.1195,
472
+ "eval_samples_per_second": 22.666,
473
+ "eval_steps_per_second": 2.833,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 0.9589372873306274,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.0382,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.3156057596206665,
486
+ "eval_runtime": 43.996,
487
+ "eval_samples_per_second": 22.729,
488
+ "eval_steps_per_second": 2.841,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.099959135055542,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.0621,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.3207496404647827,
501
+ "eval_runtime": 44.0529,
502
+ "eval_samples_per_second": 22.7,
503
+ "eval_steps_per_second": 2.837,
504
+ "step": 330
505
+ }
506
+ ],
507
+ "logging_steps": 10,
508
+ "max_steps": 675,
509
+ "num_input_tokens_seen": 0,
510
+ "num_train_epochs": 9,
511
+ "save_steps": 10,
512
+ "stateful_callbacks": {
513
+ "TrainerControl": {
514
+ "args": {
515
+ "should_epoch_stop": false,
516
+ "should_evaluate": false,
517
+ "should_log": false,
518
+ "should_save": true,
519
+ "should_training_stop": false
520
+ },
521
+ "attributes": {}
522
+ }
523
+ },
524
+ "total_flos": 5.40740375543808e+16,
525
+ "train_batch_size": 8,
526
+ "trial_name": null,
527
+ "trial_params": null
528
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-340/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-340/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-340/trainer_state.json ADDED
@@ -0,0 +1,543 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 4.533333333333333,
5
+ "eval_steps": 10,
6
+ "global_step": 340,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 0.49251970648765564,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.1196,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.2419582605361938,
321
+ "eval_runtime": 44.1478,
322
+ "eval_samples_per_second": 22.651,
323
+ "eval_steps_per_second": 2.831,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 0.5216273069381714,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.1375,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.2372699975967407,
336
+ "eval_runtime": 44.195,
337
+ "eval_samples_per_second": 22.627,
338
+ "eval_steps_per_second": 2.828,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 0.4238261580467224,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.1573,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.2556878328323364,
351
+ "eval_runtime": 44.2342,
352
+ "eval_samples_per_second": 22.607,
353
+ "eval_steps_per_second": 2.826,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 0.72156822681427,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.0865,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.2621344327926636,
366
+ "eval_runtime": 44.2027,
367
+ "eval_samples_per_second": 22.623,
368
+ "eval_steps_per_second": 2.828,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 0.5642262101173401,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.0993,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.2770243883132935,
381
+ "eval_runtime": 44.0511,
382
+ "eval_samples_per_second": 22.701,
383
+ "eval_steps_per_second": 2.838,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 0.7814852595329285,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.0989,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.2699764966964722,
396
+ "eval_runtime": 44.1962,
397
+ "eval_samples_per_second": 22.626,
398
+ "eval_steps_per_second": 2.828,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 0.698136031627655,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.1381,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.2810109853744507,
411
+ "eval_runtime": 44.084,
412
+ "eval_samples_per_second": 22.684,
413
+ "eval_steps_per_second": 2.835,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 0.6332135796546936,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.0574,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.2708227634429932,
426
+ "eval_runtime": 43.9939,
427
+ "eval_samples_per_second": 22.73,
428
+ "eval_steps_per_second": 2.841,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 0.9241636991500854,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.0944,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.2758972644805908,
441
+ "eval_runtime": 43.9816,
442
+ "eval_samples_per_second": 22.737,
443
+ "eval_steps_per_second": 2.842,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 0.639854371547699,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.0468,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.271722674369812,
456
+ "eval_runtime": 44.0382,
457
+ "eval_samples_per_second": 22.708,
458
+ "eval_steps_per_second": 2.838,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.184584140777588,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.036,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.3531861305236816,
471
+ "eval_runtime": 44.1195,
472
+ "eval_samples_per_second": 22.666,
473
+ "eval_steps_per_second": 2.833,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 0.9589372873306274,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.0382,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.3156057596206665,
486
+ "eval_runtime": 43.996,
487
+ "eval_samples_per_second": 22.729,
488
+ "eval_steps_per_second": 2.841,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.099959135055542,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.0621,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.3207496404647827,
501
+ "eval_runtime": 44.0529,
502
+ "eval_samples_per_second": 22.7,
503
+ "eval_steps_per_second": 2.837,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 1.2086342573165894,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.0585,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.3306328058242798,
516
+ "eval_runtime": 43.8749,
517
+ "eval_samples_per_second": 22.792,
518
+ "eval_steps_per_second": 2.849,
519
+ "step": 340
520
+ }
521
+ ],
522
+ "logging_steps": 10,
523
+ "max_steps": 675,
524
+ "num_input_tokens_seen": 0,
525
+ "num_train_epochs": 9,
526
+ "save_steps": 10,
527
+ "stateful_callbacks": {
528
+ "TrainerControl": {
529
+ "args": {
530
+ "should_epoch_stop": false,
531
+ "should_evaluate": false,
532
+ "should_log": false,
533
+ "should_save": true,
534
+ "should_training_stop": false
535
+ },
536
+ "attributes": {}
537
+ }
538
+ },
539
+ "total_flos": 5.57126447529984e+16,
540
+ "train_batch_size": 8,
541
+ "trial_name": null,
542
+ "trial_params": null
543
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-350/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-350/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-350/trainer_state.json ADDED
@@ -0,0 +1,558 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 4.666666666666667,
5
+ "eval_steps": 10,
6
+ "global_step": 350,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 0.49251970648765564,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.1196,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.2419582605361938,
321
+ "eval_runtime": 44.1478,
322
+ "eval_samples_per_second": 22.651,
323
+ "eval_steps_per_second": 2.831,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 0.5216273069381714,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.1375,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.2372699975967407,
336
+ "eval_runtime": 44.195,
337
+ "eval_samples_per_second": 22.627,
338
+ "eval_steps_per_second": 2.828,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 0.4238261580467224,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.1573,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.2556878328323364,
351
+ "eval_runtime": 44.2342,
352
+ "eval_samples_per_second": 22.607,
353
+ "eval_steps_per_second": 2.826,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 0.72156822681427,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.0865,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.2621344327926636,
366
+ "eval_runtime": 44.2027,
367
+ "eval_samples_per_second": 22.623,
368
+ "eval_steps_per_second": 2.828,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 0.5642262101173401,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.0993,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.2770243883132935,
381
+ "eval_runtime": 44.0511,
382
+ "eval_samples_per_second": 22.701,
383
+ "eval_steps_per_second": 2.838,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 0.7814852595329285,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.0989,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.2699764966964722,
396
+ "eval_runtime": 44.1962,
397
+ "eval_samples_per_second": 22.626,
398
+ "eval_steps_per_second": 2.828,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 0.698136031627655,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.1381,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.2810109853744507,
411
+ "eval_runtime": 44.084,
412
+ "eval_samples_per_second": 22.684,
413
+ "eval_steps_per_second": 2.835,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 0.6332135796546936,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.0574,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.2708227634429932,
426
+ "eval_runtime": 43.9939,
427
+ "eval_samples_per_second": 22.73,
428
+ "eval_steps_per_second": 2.841,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 0.9241636991500854,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.0944,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.2758972644805908,
441
+ "eval_runtime": 43.9816,
442
+ "eval_samples_per_second": 22.737,
443
+ "eval_steps_per_second": 2.842,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 0.639854371547699,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.0468,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.271722674369812,
456
+ "eval_runtime": 44.0382,
457
+ "eval_samples_per_second": 22.708,
458
+ "eval_steps_per_second": 2.838,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.184584140777588,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.036,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.3531861305236816,
471
+ "eval_runtime": 44.1195,
472
+ "eval_samples_per_second": 22.666,
473
+ "eval_steps_per_second": 2.833,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 0.9589372873306274,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.0382,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.3156057596206665,
486
+ "eval_runtime": 43.996,
487
+ "eval_samples_per_second": 22.729,
488
+ "eval_steps_per_second": 2.841,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.099959135055542,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.0621,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.3207496404647827,
501
+ "eval_runtime": 44.0529,
502
+ "eval_samples_per_second": 22.7,
503
+ "eval_steps_per_second": 2.837,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 1.2086342573165894,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.0585,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.3306328058242798,
516
+ "eval_runtime": 43.8749,
517
+ "eval_samples_per_second": 22.792,
518
+ "eval_steps_per_second": 2.849,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 0.9267418384552002,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.0599,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.324584722518921,
531
+ "eval_runtime": 43.853,
532
+ "eval_samples_per_second": 22.803,
533
+ "eval_steps_per_second": 2.85,
534
+ "step": 350
535
+ }
536
+ ],
537
+ "logging_steps": 10,
538
+ "max_steps": 675,
539
+ "num_input_tokens_seen": 0,
540
+ "num_train_epochs": 9,
541
+ "save_steps": 10,
542
+ "stateful_callbacks": {
543
+ "TrainerControl": {
544
+ "args": {
545
+ "should_epoch_stop": false,
546
+ "should_evaluate": false,
547
+ "should_log": false,
548
+ "should_save": true,
549
+ "should_training_stop": false
550
+ },
551
+ "attributes": {}
552
+ }
553
+ },
554
+ "total_flos": 5.7351251951616e+16,
555
+ "train_batch_size": 8,
556
+ "trial_name": null,
557
+ "trial_params": null
558
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-360/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-360/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-360/trainer_state.json ADDED
@@ -0,0 +1,573 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 4.8,
5
+ "eval_steps": 10,
6
+ "global_step": 360,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 0.49251970648765564,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.1196,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.2419582605361938,
321
+ "eval_runtime": 44.1478,
322
+ "eval_samples_per_second": 22.651,
323
+ "eval_steps_per_second": 2.831,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 0.5216273069381714,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.1375,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.2372699975967407,
336
+ "eval_runtime": 44.195,
337
+ "eval_samples_per_second": 22.627,
338
+ "eval_steps_per_second": 2.828,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 0.4238261580467224,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.1573,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.2556878328323364,
351
+ "eval_runtime": 44.2342,
352
+ "eval_samples_per_second": 22.607,
353
+ "eval_steps_per_second": 2.826,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 0.72156822681427,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.0865,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.2621344327926636,
366
+ "eval_runtime": 44.2027,
367
+ "eval_samples_per_second": 22.623,
368
+ "eval_steps_per_second": 2.828,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 0.5642262101173401,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.0993,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.2770243883132935,
381
+ "eval_runtime": 44.0511,
382
+ "eval_samples_per_second": 22.701,
383
+ "eval_steps_per_second": 2.838,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 0.7814852595329285,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.0989,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.2699764966964722,
396
+ "eval_runtime": 44.1962,
397
+ "eval_samples_per_second": 22.626,
398
+ "eval_steps_per_second": 2.828,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 0.698136031627655,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.1381,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.2810109853744507,
411
+ "eval_runtime": 44.084,
412
+ "eval_samples_per_second": 22.684,
413
+ "eval_steps_per_second": 2.835,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 0.6332135796546936,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.0574,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.2708227634429932,
426
+ "eval_runtime": 43.9939,
427
+ "eval_samples_per_second": 22.73,
428
+ "eval_steps_per_second": 2.841,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 0.9241636991500854,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.0944,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.2758972644805908,
441
+ "eval_runtime": 43.9816,
442
+ "eval_samples_per_second": 22.737,
443
+ "eval_steps_per_second": 2.842,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 0.639854371547699,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.0468,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.271722674369812,
456
+ "eval_runtime": 44.0382,
457
+ "eval_samples_per_second": 22.708,
458
+ "eval_steps_per_second": 2.838,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.184584140777588,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.036,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.3531861305236816,
471
+ "eval_runtime": 44.1195,
472
+ "eval_samples_per_second": 22.666,
473
+ "eval_steps_per_second": 2.833,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 0.9589372873306274,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.0382,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.3156057596206665,
486
+ "eval_runtime": 43.996,
487
+ "eval_samples_per_second": 22.729,
488
+ "eval_steps_per_second": 2.841,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.099959135055542,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.0621,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.3207496404647827,
501
+ "eval_runtime": 44.0529,
502
+ "eval_samples_per_second": 22.7,
503
+ "eval_steps_per_second": 2.837,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 1.2086342573165894,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.0585,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.3306328058242798,
516
+ "eval_runtime": 43.8749,
517
+ "eval_samples_per_second": 22.792,
518
+ "eval_steps_per_second": 2.849,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 0.9267418384552002,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.0599,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.324584722518921,
531
+ "eval_runtime": 43.853,
532
+ "eval_samples_per_second": 22.803,
533
+ "eval_steps_per_second": 2.85,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 1.116028070449829,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.0048,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.3211394548416138,
546
+ "eval_runtime": 44.1843,
547
+ "eval_samples_per_second": 22.632,
548
+ "eval_steps_per_second": 2.829,
549
+ "step": 360
550
+ }
551
+ ],
552
+ "logging_steps": 10,
553
+ "max_steps": 675,
554
+ "num_input_tokens_seen": 0,
555
+ "num_train_epochs": 9,
556
+ "save_steps": 10,
557
+ "stateful_callbacks": {
558
+ "TrainerControl": {
559
+ "args": {
560
+ "should_epoch_stop": false,
561
+ "should_evaluate": false,
562
+ "should_log": false,
563
+ "should_save": true,
564
+ "should_training_stop": false
565
+ },
566
+ "attributes": {}
567
+ }
568
+ },
569
+ "total_flos": 5.89898591502336e+16,
570
+ "train_batch_size": 8,
571
+ "trial_name": null,
572
+ "trial_params": null
573
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-370/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-370/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-370/trainer_state.json ADDED
@@ -0,0 +1,588 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 4.933333333333334,
5
+ "eval_steps": 10,
6
+ "global_step": 370,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 0.49251970648765564,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.1196,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.2419582605361938,
321
+ "eval_runtime": 44.1478,
322
+ "eval_samples_per_second": 22.651,
323
+ "eval_steps_per_second": 2.831,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 0.5216273069381714,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.1375,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.2372699975967407,
336
+ "eval_runtime": 44.195,
337
+ "eval_samples_per_second": 22.627,
338
+ "eval_steps_per_second": 2.828,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 0.4238261580467224,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.1573,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.2556878328323364,
351
+ "eval_runtime": 44.2342,
352
+ "eval_samples_per_second": 22.607,
353
+ "eval_steps_per_second": 2.826,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 0.72156822681427,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.0865,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.2621344327926636,
366
+ "eval_runtime": 44.2027,
367
+ "eval_samples_per_second": 22.623,
368
+ "eval_steps_per_second": 2.828,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 0.5642262101173401,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.0993,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.2770243883132935,
381
+ "eval_runtime": 44.0511,
382
+ "eval_samples_per_second": 22.701,
383
+ "eval_steps_per_second": 2.838,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 0.7814852595329285,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.0989,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.2699764966964722,
396
+ "eval_runtime": 44.1962,
397
+ "eval_samples_per_second": 22.626,
398
+ "eval_steps_per_second": 2.828,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 0.698136031627655,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.1381,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.2810109853744507,
411
+ "eval_runtime": 44.084,
412
+ "eval_samples_per_second": 22.684,
413
+ "eval_steps_per_second": 2.835,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 0.6332135796546936,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.0574,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.2708227634429932,
426
+ "eval_runtime": 43.9939,
427
+ "eval_samples_per_second": 22.73,
428
+ "eval_steps_per_second": 2.841,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 0.9241636991500854,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.0944,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.2758972644805908,
441
+ "eval_runtime": 43.9816,
442
+ "eval_samples_per_second": 22.737,
443
+ "eval_steps_per_second": 2.842,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 0.639854371547699,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.0468,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.271722674369812,
456
+ "eval_runtime": 44.0382,
457
+ "eval_samples_per_second": 22.708,
458
+ "eval_steps_per_second": 2.838,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.184584140777588,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.036,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.3531861305236816,
471
+ "eval_runtime": 44.1195,
472
+ "eval_samples_per_second": 22.666,
473
+ "eval_steps_per_second": 2.833,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 0.9589372873306274,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.0382,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.3156057596206665,
486
+ "eval_runtime": 43.996,
487
+ "eval_samples_per_second": 22.729,
488
+ "eval_steps_per_second": 2.841,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.099959135055542,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.0621,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.3207496404647827,
501
+ "eval_runtime": 44.0529,
502
+ "eval_samples_per_second": 22.7,
503
+ "eval_steps_per_second": 2.837,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 1.2086342573165894,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.0585,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.3306328058242798,
516
+ "eval_runtime": 43.8749,
517
+ "eval_samples_per_second": 22.792,
518
+ "eval_steps_per_second": 2.849,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 0.9267418384552002,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.0599,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.324584722518921,
531
+ "eval_runtime": 43.853,
532
+ "eval_samples_per_second": 22.803,
533
+ "eval_steps_per_second": 2.85,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 1.116028070449829,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.0048,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.3211394548416138,
546
+ "eval_runtime": 44.1843,
547
+ "eval_samples_per_second": 22.632,
548
+ "eval_steps_per_second": 2.829,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 1.0464606285095215,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.0147,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.3230206966400146,
561
+ "eval_runtime": 44.0559,
562
+ "eval_samples_per_second": 22.698,
563
+ "eval_steps_per_second": 2.837,
564
+ "step": 370
565
+ }
566
+ ],
567
+ "logging_steps": 10,
568
+ "max_steps": 675,
569
+ "num_input_tokens_seen": 0,
570
+ "num_train_epochs": 9,
571
+ "save_steps": 10,
572
+ "stateful_callbacks": {
573
+ "TrainerControl": {
574
+ "args": {
575
+ "should_epoch_stop": false,
576
+ "should_evaluate": false,
577
+ "should_log": false,
578
+ "should_save": true,
579
+ "should_training_stop": false
580
+ },
581
+ "attributes": {}
582
+ }
583
+ },
584
+ "total_flos": 6.06284663488512e+16,
585
+ "train_batch_size": 8,
586
+ "trial_name": null,
587
+ "trial_params": null
588
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-380/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-380/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-380/trainer_state.json ADDED
@@ -0,0 +1,603 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 5.066666666666666,
5
+ "eval_steps": 10,
6
+ "global_step": 380,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 0.49251970648765564,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.1196,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.2419582605361938,
321
+ "eval_runtime": 44.1478,
322
+ "eval_samples_per_second": 22.651,
323
+ "eval_steps_per_second": 2.831,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 0.5216273069381714,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.1375,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.2372699975967407,
336
+ "eval_runtime": 44.195,
337
+ "eval_samples_per_second": 22.627,
338
+ "eval_steps_per_second": 2.828,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 0.4238261580467224,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.1573,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.2556878328323364,
351
+ "eval_runtime": 44.2342,
352
+ "eval_samples_per_second": 22.607,
353
+ "eval_steps_per_second": 2.826,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 0.72156822681427,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.0865,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.2621344327926636,
366
+ "eval_runtime": 44.2027,
367
+ "eval_samples_per_second": 22.623,
368
+ "eval_steps_per_second": 2.828,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 0.5642262101173401,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.0993,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.2770243883132935,
381
+ "eval_runtime": 44.0511,
382
+ "eval_samples_per_second": 22.701,
383
+ "eval_steps_per_second": 2.838,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 0.7814852595329285,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.0989,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.2699764966964722,
396
+ "eval_runtime": 44.1962,
397
+ "eval_samples_per_second": 22.626,
398
+ "eval_steps_per_second": 2.828,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 0.698136031627655,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.1381,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.2810109853744507,
411
+ "eval_runtime": 44.084,
412
+ "eval_samples_per_second": 22.684,
413
+ "eval_steps_per_second": 2.835,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 0.6332135796546936,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.0574,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.2708227634429932,
426
+ "eval_runtime": 43.9939,
427
+ "eval_samples_per_second": 22.73,
428
+ "eval_steps_per_second": 2.841,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 0.9241636991500854,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.0944,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.2758972644805908,
441
+ "eval_runtime": 43.9816,
442
+ "eval_samples_per_second": 22.737,
443
+ "eval_steps_per_second": 2.842,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 0.639854371547699,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.0468,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.271722674369812,
456
+ "eval_runtime": 44.0382,
457
+ "eval_samples_per_second": 22.708,
458
+ "eval_steps_per_second": 2.838,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.184584140777588,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.036,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.3531861305236816,
471
+ "eval_runtime": 44.1195,
472
+ "eval_samples_per_second": 22.666,
473
+ "eval_steps_per_second": 2.833,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 0.9589372873306274,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.0382,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.3156057596206665,
486
+ "eval_runtime": 43.996,
487
+ "eval_samples_per_second": 22.729,
488
+ "eval_steps_per_second": 2.841,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.099959135055542,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.0621,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.3207496404647827,
501
+ "eval_runtime": 44.0529,
502
+ "eval_samples_per_second": 22.7,
503
+ "eval_steps_per_second": 2.837,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 1.2086342573165894,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.0585,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.3306328058242798,
516
+ "eval_runtime": 43.8749,
517
+ "eval_samples_per_second": 22.792,
518
+ "eval_steps_per_second": 2.849,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 0.9267418384552002,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.0599,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.324584722518921,
531
+ "eval_runtime": 43.853,
532
+ "eval_samples_per_second": 22.803,
533
+ "eval_steps_per_second": 2.85,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 1.116028070449829,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.0048,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.3211394548416138,
546
+ "eval_runtime": 44.1843,
547
+ "eval_samples_per_second": 22.632,
548
+ "eval_steps_per_second": 2.829,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 1.0464606285095215,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.0147,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.3230206966400146,
561
+ "eval_runtime": 44.0559,
562
+ "eval_samples_per_second": 22.698,
563
+ "eval_steps_per_second": 2.837,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.1091907024383545,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.0073,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 1.3765190839767456,
576
+ "eval_runtime": 44.0219,
577
+ "eval_samples_per_second": 22.716,
578
+ "eval_steps_per_second": 2.839,
579
+ "step": 380
580
+ }
581
+ ],
582
+ "logging_steps": 10,
583
+ "max_steps": 675,
584
+ "num_input_tokens_seen": 0,
585
+ "num_train_epochs": 9,
586
+ "save_steps": 10,
587
+ "stateful_callbacks": {
588
+ "TrainerControl": {
589
+ "args": {
590
+ "should_epoch_stop": false,
591
+ "should_evaluate": false,
592
+ "should_log": false,
593
+ "should_save": true,
594
+ "should_training_stop": false
595
+ },
596
+ "attributes": {}
597
+ }
598
+ },
599
+ "total_flos": 6.22670735474688e+16,
600
+ "train_batch_size": 8,
601
+ "trial_name": null,
602
+ "trial_params": null
603
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-390/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-390/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-390/trainer_state.json ADDED
@@ -0,0 +1,618 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.2202378511428833,
3
+ "best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
4
+ "epoch": 5.2,
5
+ "eval_steps": 10,
6
+ "global_step": 390,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.30893075466156006,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 1.1733,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 1.2328641414642334,
21
+ "eval_runtime": 44.0263,
22
+ "eval_samples_per_second": 22.714,
23
+ "eval_steps_per_second": 2.839,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.17991244792938232,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 1.2254,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 1.228402853012085,
36
+ "eval_runtime": 43.8933,
37
+ "eval_samples_per_second": 22.783,
38
+ "eval_steps_per_second": 2.848,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.1784493625164032,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 1.2043,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 1.2251635789871216,
51
+ "eval_runtime": 44.0062,
52
+ "eval_samples_per_second": 22.724,
53
+ "eval_steps_per_second": 2.841,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.21547502279281616,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 1.1879,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 1.2234975099563599,
66
+ "eval_runtime": 44.0274,
67
+ "eval_samples_per_second": 22.713,
68
+ "eval_steps_per_second": 2.839,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.22946320474147797,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 1.2158,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 1.2221243381500244,
81
+ "eval_runtime": 44.1867,
82
+ "eval_samples_per_second": 22.631,
83
+ "eval_steps_per_second": 2.829,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.23243005573749542,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 1.1901,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 1.220987319946289,
96
+ "eval_runtime": 44.0985,
97
+ "eval_samples_per_second": 22.677,
98
+ "eval_steps_per_second": 2.835,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.19336333870887756,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 1.2074,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 1.2202378511428833,
111
+ "eval_runtime": 43.9577,
112
+ "eval_samples_per_second": 22.749,
113
+ "eval_steps_per_second": 2.844,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.1610746681690216,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 1.1434,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 1.22028386592865,
126
+ "eval_runtime": 43.903,
127
+ "eval_samples_per_second": 22.777,
128
+ "eval_steps_per_second": 2.847,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.18507854640483856,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 1.1506,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 1.221218466758728,
141
+ "eval_runtime": 43.981,
142
+ "eval_samples_per_second": 22.737,
143
+ "eval_steps_per_second": 2.842,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.17022280395030975,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 1.1761,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 1.2210596799850464,
156
+ "eval_runtime": 43.9473,
157
+ "eval_samples_per_second": 22.755,
158
+ "eval_steps_per_second": 2.844,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.27772682905197144,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 1.2465,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 1.2218444347381592,
171
+ "eval_runtime": 43.8733,
172
+ "eval_samples_per_second": 22.793,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.2792418599128723,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 1.1664,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 1.2227915525436401,
186
+ "eval_runtime": 43.869,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.32393139600753784,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 1.1835,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 1.2218685150146484,
201
+ "eval_runtime": 43.878,
202
+ "eval_samples_per_second": 22.79,
203
+ "eval_steps_per_second": 2.849,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 0.3198949694633484,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 1.1687,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 1.2223820686340332,
216
+ "eval_runtime": 43.9319,
217
+ "eval_samples_per_second": 22.763,
218
+ "eval_steps_per_second": 2.845,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.2342524528503418,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 1.1516,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 1.2233225107192993,
231
+ "eval_runtime": 43.9266,
232
+ "eval_samples_per_second": 22.765,
233
+ "eval_steps_per_second": 2.846,
234
+ "step": 150
235
+ },
236
+ {
237
+ "epoch": 2.1333333333333333,
238
+ "grad_norm": 0.26675984263420105,
239
+ "learning_rate": 6.103703703703704e-05,
240
+ "loss": 1.1673,
241
+ "step": 160
242
+ },
243
+ {
244
+ "epoch": 2.1333333333333333,
245
+ "eval_loss": 1.2325456142425537,
246
+ "eval_runtime": 43.9006,
247
+ "eval_samples_per_second": 22.779,
248
+ "eval_steps_per_second": 2.847,
249
+ "step": 160
250
+ },
251
+ {
252
+ "epoch": 2.2666666666666666,
253
+ "grad_norm": 0.36160191893577576,
254
+ "learning_rate": 5.9851851851851855e-05,
255
+ "loss": 1.1959,
256
+ "step": 170
257
+ },
258
+ {
259
+ "epoch": 2.2666666666666666,
260
+ "eval_loss": 1.2345908880233765,
261
+ "eval_runtime": 44.0473,
262
+ "eval_samples_per_second": 22.703,
263
+ "eval_steps_per_second": 2.838,
264
+ "step": 170
265
+ },
266
+ {
267
+ "epoch": 2.4,
268
+ "grad_norm": 0.35918164253234863,
269
+ "learning_rate": 5.8666666666666665e-05,
270
+ "loss": 1.1213,
271
+ "step": 180
272
+ },
273
+ {
274
+ "epoch": 2.4,
275
+ "eval_loss": 1.2354995012283325,
276
+ "eval_runtime": 43.984,
277
+ "eval_samples_per_second": 22.736,
278
+ "eval_steps_per_second": 2.842,
279
+ "step": 180
280
+ },
281
+ {
282
+ "epoch": 2.533333333333333,
283
+ "grad_norm": 0.4165070652961731,
284
+ "learning_rate": 5.748148148148149e-05,
285
+ "loss": 1.1228,
286
+ "step": 190
287
+ },
288
+ {
289
+ "epoch": 2.533333333333333,
290
+ "eval_loss": 1.2382323741912842,
291
+ "eval_runtime": 44.1465,
292
+ "eval_samples_per_second": 22.652,
293
+ "eval_steps_per_second": 2.831,
294
+ "step": 190
295
+ },
296
+ {
297
+ "epoch": 2.6666666666666665,
298
+ "grad_norm": 0.3703323304653168,
299
+ "learning_rate": 5.62962962962963e-05,
300
+ "loss": 1.1306,
301
+ "step": 200
302
+ },
303
+ {
304
+ "epoch": 2.6666666666666665,
305
+ "eval_loss": 1.2381049394607544,
306
+ "eval_runtime": 44.0824,
307
+ "eval_samples_per_second": 22.685,
308
+ "eval_steps_per_second": 2.836,
309
+ "step": 200
310
+ },
311
+ {
312
+ "epoch": 2.8,
313
+ "grad_norm": 0.49251970648765564,
314
+ "learning_rate": 5.511111111111112e-05,
315
+ "loss": 1.1196,
316
+ "step": 210
317
+ },
318
+ {
319
+ "epoch": 2.8,
320
+ "eval_loss": 1.2419582605361938,
321
+ "eval_runtime": 44.1478,
322
+ "eval_samples_per_second": 22.651,
323
+ "eval_steps_per_second": 2.831,
324
+ "step": 210
325
+ },
326
+ {
327
+ "epoch": 2.9333333333333336,
328
+ "grad_norm": 0.5216273069381714,
329
+ "learning_rate": 5.392592592592593e-05,
330
+ "loss": 1.1375,
331
+ "step": 220
332
+ },
333
+ {
334
+ "epoch": 2.9333333333333336,
335
+ "eval_loss": 1.2372699975967407,
336
+ "eval_runtime": 44.195,
337
+ "eval_samples_per_second": 22.627,
338
+ "eval_steps_per_second": 2.828,
339
+ "step": 220
340
+ },
341
+ {
342
+ "epoch": 3.066666666666667,
343
+ "grad_norm": 0.4238261580467224,
344
+ "learning_rate": 5.274074074074074e-05,
345
+ "loss": 1.1573,
346
+ "step": 230
347
+ },
348
+ {
349
+ "epoch": 3.066666666666667,
350
+ "eval_loss": 1.2556878328323364,
351
+ "eval_runtime": 44.2342,
352
+ "eval_samples_per_second": 22.607,
353
+ "eval_steps_per_second": 2.826,
354
+ "step": 230
355
+ },
356
+ {
357
+ "epoch": 3.2,
358
+ "grad_norm": 0.72156822681427,
359
+ "learning_rate": 5.155555555555556e-05,
360
+ "loss": 1.0865,
361
+ "step": 240
362
+ },
363
+ {
364
+ "epoch": 3.2,
365
+ "eval_loss": 1.2621344327926636,
366
+ "eval_runtime": 44.2027,
367
+ "eval_samples_per_second": 22.623,
368
+ "eval_steps_per_second": 2.828,
369
+ "step": 240
370
+ },
371
+ {
372
+ "epoch": 3.3333333333333335,
373
+ "grad_norm": 0.5642262101173401,
374
+ "learning_rate": 5.037037037037037e-05,
375
+ "loss": 1.0993,
376
+ "step": 250
377
+ },
378
+ {
379
+ "epoch": 3.3333333333333335,
380
+ "eval_loss": 1.2770243883132935,
381
+ "eval_runtime": 44.0511,
382
+ "eval_samples_per_second": 22.701,
383
+ "eval_steps_per_second": 2.838,
384
+ "step": 250
385
+ },
386
+ {
387
+ "epoch": 3.466666666666667,
388
+ "grad_norm": 0.7814852595329285,
389
+ "learning_rate": 4.918518518518519e-05,
390
+ "loss": 1.0989,
391
+ "step": 260
392
+ },
393
+ {
394
+ "epoch": 3.466666666666667,
395
+ "eval_loss": 1.2699764966964722,
396
+ "eval_runtime": 44.1962,
397
+ "eval_samples_per_second": 22.626,
398
+ "eval_steps_per_second": 2.828,
399
+ "step": 260
400
+ },
401
+ {
402
+ "epoch": 3.6,
403
+ "grad_norm": 0.698136031627655,
404
+ "learning_rate": 4.8e-05,
405
+ "loss": 1.1381,
406
+ "step": 270
407
+ },
408
+ {
409
+ "epoch": 3.6,
410
+ "eval_loss": 1.2810109853744507,
411
+ "eval_runtime": 44.084,
412
+ "eval_samples_per_second": 22.684,
413
+ "eval_steps_per_second": 2.835,
414
+ "step": 270
415
+ },
416
+ {
417
+ "epoch": 3.7333333333333334,
418
+ "grad_norm": 0.6332135796546936,
419
+ "learning_rate": 4.681481481481481e-05,
420
+ "loss": 1.0574,
421
+ "step": 280
422
+ },
423
+ {
424
+ "epoch": 3.7333333333333334,
425
+ "eval_loss": 1.2708227634429932,
426
+ "eval_runtime": 43.9939,
427
+ "eval_samples_per_second": 22.73,
428
+ "eval_steps_per_second": 2.841,
429
+ "step": 280
430
+ },
431
+ {
432
+ "epoch": 3.8666666666666667,
433
+ "grad_norm": 0.9241636991500854,
434
+ "learning_rate": 4.5629629629629636e-05,
435
+ "loss": 1.0944,
436
+ "step": 290
437
+ },
438
+ {
439
+ "epoch": 3.8666666666666667,
440
+ "eval_loss": 1.2758972644805908,
441
+ "eval_runtime": 43.9816,
442
+ "eval_samples_per_second": 22.737,
443
+ "eval_steps_per_second": 2.842,
444
+ "step": 290
445
+ },
446
+ {
447
+ "epoch": 4.0,
448
+ "grad_norm": 0.639854371547699,
449
+ "learning_rate": 4.444444444444445e-05,
450
+ "loss": 1.0468,
451
+ "step": 300
452
+ },
453
+ {
454
+ "epoch": 4.0,
455
+ "eval_loss": 1.271722674369812,
456
+ "eval_runtime": 44.0382,
457
+ "eval_samples_per_second": 22.708,
458
+ "eval_steps_per_second": 2.838,
459
+ "step": 300
460
+ },
461
+ {
462
+ "epoch": 4.133333333333334,
463
+ "grad_norm": 1.184584140777588,
464
+ "learning_rate": 4.3259259259259264e-05,
465
+ "loss": 1.036,
466
+ "step": 310
467
+ },
468
+ {
469
+ "epoch": 4.133333333333334,
470
+ "eval_loss": 1.3531861305236816,
471
+ "eval_runtime": 44.1195,
472
+ "eval_samples_per_second": 22.666,
473
+ "eval_steps_per_second": 2.833,
474
+ "step": 310
475
+ },
476
+ {
477
+ "epoch": 4.266666666666667,
478
+ "grad_norm": 0.9589372873306274,
479
+ "learning_rate": 4.2074074074074075e-05,
480
+ "loss": 1.0382,
481
+ "step": 320
482
+ },
483
+ {
484
+ "epoch": 4.266666666666667,
485
+ "eval_loss": 1.3156057596206665,
486
+ "eval_runtime": 43.996,
487
+ "eval_samples_per_second": 22.729,
488
+ "eval_steps_per_second": 2.841,
489
+ "step": 320
490
+ },
491
+ {
492
+ "epoch": 4.4,
493
+ "grad_norm": 1.099959135055542,
494
+ "learning_rate": 4.088888888888889e-05,
495
+ "loss": 1.0621,
496
+ "step": 330
497
+ },
498
+ {
499
+ "epoch": 4.4,
500
+ "eval_loss": 1.3207496404647827,
501
+ "eval_runtime": 44.0529,
502
+ "eval_samples_per_second": 22.7,
503
+ "eval_steps_per_second": 2.837,
504
+ "step": 330
505
+ },
506
+ {
507
+ "epoch": 4.533333333333333,
508
+ "grad_norm": 1.2086342573165894,
509
+ "learning_rate": 3.970370370370371e-05,
510
+ "loss": 1.0585,
511
+ "step": 340
512
+ },
513
+ {
514
+ "epoch": 4.533333333333333,
515
+ "eval_loss": 1.3306328058242798,
516
+ "eval_runtime": 43.8749,
517
+ "eval_samples_per_second": 22.792,
518
+ "eval_steps_per_second": 2.849,
519
+ "step": 340
520
+ },
521
+ {
522
+ "epoch": 4.666666666666667,
523
+ "grad_norm": 0.9267418384552002,
524
+ "learning_rate": 3.851851851851852e-05,
525
+ "loss": 1.0599,
526
+ "step": 350
527
+ },
528
+ {
529
+ "epoch": 4.666666666666667,
530
+ "eval_loss": 1.324584722518921,
531
+ "eval_runtime": 43.853,
532
+ "eval_samples_per_second": 22.803,
533
+ "eval_steps_per_second": 2.85,
534
+ "step": 350
535
+ },
536
+ {
537
+ "epoch": 4.8,
538
+ "grad_norm": 1.116028070449829,
539
+ "learning_rate": 3.733333333333334e-05,
540
+ "loss": 1.0048,
541
+ "step": 360
542
+ },
543
+ {
544
+ "epoch": 4.8,
545
+ "eval_loss": 1.3211394548416138,
546
+ "eval_runtime": 44.1843,
547
+ "eval_samples_per_second": 22.632,
548
+ "eval_steps_per_second": 2.829,
549
+ "step": 360
550
+ },
551
+ {
552
+ "epoch": 4.933333333333334,
553
+ "grad_norm": 1.0464606285095215,
554
+ "learning_rate": 3.614814814814815e-05,
555
+ "loss": 1.0147,
556
+ "step": 370
557
+ },
558
+ {
559
+ "epoch": 4.933333333333334,
560
+ "eval_loss": 1.3230206966400146,
561
+ "eval_runtime": 44.0559,
562
+ "eval_samples_per_second": 22.698,
563
+ "eval_steps_per_second": 2.837,
564
+ "step": 370
565
+ },
566
+ {
567
+ "epoch": 5.066666666666666,
568
+ "grad_norm": 1.1091907024383545,
569
+ "learning_rate": 3.4962962962962965e-05,
570
+ "loss": 1.0073,
571
+ "step": 380
572
+ },
573
+ {
574
+ "epoch": 5.066666666666666,
575
+ "eval_loss": 1.3765190839767456,
576
+ "eval_runtime": 44.0219,
577
+ "eval_samples_per_second": 22.716,
578
+ "eval_steps_per_second": 2.839,
579
+ "step": 380
580
+ },
581
+ {
582
+ "epoch": 5.2,
583
+ "grad_norm": 1.3128504753112793,
584
+ "learning_rate": 3.377777777777778e-05,
585
+ "loss": 1.0126,
586
+ "step": 390
587
+ },
588
+ {
589
+ "epoch": 5.2,
590
+ "eval_loss": 1.3743306398391724,
591
+ "eval_runtime": 43.9063,
592
+ "eval_samples_per_second": 22.776,
593
+ "eval_steps_per_second": 2.847,
594
+ "step": 390
595
+ }
596
+ ],
597
+ "logging_steps": 10,
598
+ "max_steps": 675,
599
+ "num_input_tokens_seen": 0,
600
+ "num_train_epochs": 9,
601
+ "save_steps": 10,
602
+ "stateful_callbacks": {
603
+ "TrainerControl": {
604
+ "args": {
605
+ "should_epoch_stop": false,
606
+ "should_evaluate": false,
607
+ "should_log": false,
608
+ "should_save": true,
609
+ "should_training_stop": false
610
+ },
611
+ "attributes": {}
612
+ }
613
+ },
614
+ "total_flos": 6.39056807460864e+16,
615
+ "train_batch_size": 8,
616
+ "trial_name": null,
617
+ "trial_params": null
618
+ }
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-400/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-400/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "query_key_value",
24
+ "dense_4h_to_h",
25
+ "dense_h_to_4h",
26
+ "dense"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }