Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-540/adapter_model.safetensors +3 -0
- output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-290/adapter_model.safetensors +3 -0
- output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-675/adapter_model.safetensors +3 -0
- output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-660/adapter_model.safetensors +3 -0
- output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-320/adapter_model.safetensors +3 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-250/trainer_state.json +408 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-260/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-260/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-260/trainer_state.json +423 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-270/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-270/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-270/trainer_state.json +438 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-280/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-280/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-280/trainer_state.json +453 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-290/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-290/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-290/trainer_state.json +468 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-300/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-300/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-300/trainer_state.json +483 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-310/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-310/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-310/trainer_state.json +498 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-320/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-320/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-320/trainer_state.json +513 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-330/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-330/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-330/trainer_state.json +528 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-340/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-340/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-340/trainer_state.json +543 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-350/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-350/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-350/trainer_state.json +558 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-360/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-360/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-360/trainer_state.json +573 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-370/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-370/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-370/trainer_state.json +588 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-380/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-380/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-380/trainer_state.json +603 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-390/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-390/adapter_config.json +31 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-390/trainer_state.json +618 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-400/README.md +202 -0
- output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-400/adapter_config.json +31 -0
output_ft_more_layers_books3_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-books3-8e-05/checkpoint-540/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d29222ac3f3fa513bacd1245deaa16d781e9f0c1dcee2e3f7a853b262252fb5f
|
3 |
+
size 67144544
|
output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-290/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a73cce5dd1be3d6c0200bc9d747cc7ce6d3d45a917ebe81cfaec65a64fc6cdc
|
3 |
+
size 67144544
|
output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-675/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:445316158457ca094eed5471f00e77cce05ea294e2de51e42c30772ccac295b0
|
3 |
+
size 67144544
|
output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-660/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dacab1dc80e2ce118ab37a4ae3e8962eec64e67d70f7a09dc49b7b7ac5fade2c
|
3 |
+
size 67144544
|
output_ft_more_layers_hackernews_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-hackernews-8e-05/checkpoint-320/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:001a5171cbc5098faa66b014357360fcedebb3b99dd82087cc8cec2e670550bc
|
3 |
+
size 67144544
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-250/trainer_state.json
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 3.3333333333333335,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 250,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 0.49251970648765564,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.1196,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.2419582605361938,
|
321 |
+
"eval_runtime": 44.1478,
|
322 |
+
"eval_samples_per_second": 22.651,
|
323 |
+
"eval_steps_per_second": 2.831,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 0.5216273069381714,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.1375,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.2372699975967407,
|
336 |
+
"eval_runtime": 44.195,
|
337 |
+
"eval_samples_per_second": 22.627,
|
338 |
+
"eval_steps_per_second": 2.828,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 0.4238261580467224,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.1573,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.2556878328323364,
|
351 |
+
"eval_runtime": 44.2342,
|
352 |
+
"eval_samples_per_second": 22.607,
|
353 |
+
"eval_steps_per_second": 2.826,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 0.72156822681427,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.0865,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.2621344327926636,
|
366 |
+
"eval_runtime": 44.2027,
|
367 |
+
"eval_samples_per_second": 22.623,
|
368 |
+
"eval_steps_per_second": 2.828,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 0.5642262101173401,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.0993,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.2770243883132935,
|
381 |
+
"eval_runtime": 44.0511,
|
382 |
+
"eval_samples_per_second": 22.701,
|
383 |
+
"eval_steps_per_second": 2.838,
|
384 |
+
"step": 250
|
385 |
+
}
|
386 |
+
],
|
387 |
+
"logging_steps": 10,
|
388 |
+
"max_steps": 675,
|
389 |
+
"num_input_tokens_seen": 0,
|
390 |
+
"num_train_epochs": 9,
|
391 |
+
"save_steps": 10,
|
392 |
+
"stateful_callbacks": {
|
393 |
+
"TrainerControl": {
|
394 |
+
"args": {
|
395 |
+
"should_epoch_stop": false,
|
396 |
+
"should_evaluate": false,
|
397 |
+
"should_log": false,
|
398 |
+
"should_save": true,
|
399 |
+
"should_training_stop": false
|
400 |
+
},
|
401 |
+
"attributes": {}
|
402 |
+
}
|
403 |
+
},
|
404 |
+
"total_flos": 4.096517996544e+16,
|
405 |
+
"train_batch_size": 8,
|
406 |
+
"trial_name": null,
|
407 |
+
"trial_params": null
|
408 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-260/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-260/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-260/trainer_state.json
ADDED
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 3.466666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 260,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 0.49251970648765564,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.1196,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.2419582605361938,
|
321 |
+
"eval_runtime": 44.1478,
|
322 |
+
"eval_samples_per_second": 22.651,
|
323 |
+
"eval_steps_per_second": 2.831,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 0.5216273069381714,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.1375,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.2372699975967407,
|
336 |
+
"eval_runtime": 44.195,
|
337 |
+
"eval_samples_per_second": 22.627,
|
338 |
+
"eval_steps_per_second": 2.828,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 0.4238261580467224,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.1573,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.2556878328323364,
|
351 |
+
"eval_runtime": 44.2342,
|
352 |
+
"eval_samples_per_second": 22.607,
|
353 |
+
"eval_steps_per_second": 2.826,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 0.72156822681427,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.0865,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.2621344327926636,
|
366 |
+
"eval_runtime": 44.2027,
|
367 |
+
"eval_samples_per_second": 22.623,
|
368 |
+
"eval_steps_per_second": 2.828,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 0.5642262101173401,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.0993,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.2770243883132935,
|
381 |
+
"eval_runtime": 44.0511,
|
382 |
+
"eval_samples_per_second": 22.701,
|
383 |
+
"eval_steps_per_second": 2.838,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 0.7814852595329285,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.0989,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.2699764966964722,
|
396 |
+
"eval_runtime": 44.1962,
|
397 |
+
"eval_samples_per_second": 22.626,
|
398 |
+
"eval_steps_per_second": 2.828,
|
399 |
+
"step": 260
|
400 |
+
}
|
401 |
+
],
|
402 |
+
"logging_steps": 10,
|
403 |
+
"max_steps": 675,
|
404 |
+
"num_input_tokens_seen": 0,
|
405 |
+
"num_train_epochs": 9,
|
406 |
+
"save_steps": 10,
|
407 |
+
"stateful_callbacks": {
|
408 |
+
"TrainerControl": {
|
409 |
+
"args": {
|
410 |
+
"should_epoch_stop": false,
|
411 |
+
"should_evaluate": false,
|
412 |
+
"should_log": false,
|
413 |
+
"should_save": true,
|
414 |
+
"should_training_stop": false
|
415 |
+
},
|
416 |
+
"attributes": {}
|
417 |
+
}
|
418 |
+
},
|
419 |
+
"total_flos": 4.26037871640576e+16,
|
420 |
+
"train_batch_size": 8,
|
421 |
+
"trial_name": null,
|
422 |
+
"trial_params": null
|
423 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-270/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-270/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-270/trainer_state.json
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 3.6,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 270,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 0.49251970648765564,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.1196,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.2419582605361938,
|
321 |
+
"eval_runtime": 44.1478,
|
322 |
+
"eval_samples_per_second": 22.651,
|
323 |
+
"eval_steps_per_second": 2.831,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 0.5216273069381714,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.1375,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.2372699975967407,
|
336 |
+
"eval_runtime": 44.195,
|
337 |
+
"eval_samples_per_second": 22.627,
|
338 |
+
"eval_steps_per_second": 2.828,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 0.4238261580467224,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.1573,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.2556878328323364,
|
351 |
+
"eval_runtime": 44.2342,
|
352 |
+
"eval_samples_per_second": 22.607,
|
353 |
+
"eval_steps_per_second": 2.826,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 0.72156822681427,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.0865,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.2621344327926636,
|
366 |
+
"eval_runtime": 44.2027,
|
367 |
+
"eval_samples_per_second": 22.623,
|
368 |
+
"eval_steps_per_second": 2.828,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 0.5642262101173401,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.0993,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.2770243883132935,
|
381 |
+
"eval_runtime": 44.0511,
|
382 |
+
"eval_samples_per_second": 22.701,
|
383 |
+
"eval_steps_per_second": 2.838,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 0.7814852595329285,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.0989,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.2699764966964722,
|
396 |
+
"eval_runtime": 44.1962,
|
397 |
+
"eval_samples_per_second": 22.626,
|
398 |
+
"eval_steps_per_second": 2.828,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 0.698136031627655,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1381,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.2810109853744507,
|
411 |
+
"eval_runtime": 44.084,
|
412 |
+
"eval_samples_per_second": 22.684,
|
413 |
+
"eval_steps_per_second": 2.835,
|
414 |
+
"step": 270
|
415 |
+
}
|
416 |
+
],
|
417 |
+
"logging_steps": 10,
|
418 |
+
"max_steps": 675,
|
419 |
+
"num_input_tokens_seen": 0,
|
420 |
+
"num_train_epochs": 9,
|
421 |
+
"save_steps": 10,
|
422 |
+
"stateful_callbacks": {
|
423 |
+
"TrainerControl": {
|
424 |
+
"args": {
|
425 |
+
"should_epoch_stop": false,
|
426 |
+
"should_evaluate": false,
|
427 |
+
"should_log": false,
|
428 |
+
"should_save": true,
|
429 |
+
"should_training_stop": false
|
430 |
+
},
|
431 |
+
"attributes": {}
|
432 |
+
}
|
433 |
+
},
|
434 |
+
"total_flos": 4.42423943626752e+16,
|
435 |
+
"train_batch_size": 8,
|
436 |
+
"trial_name": null,
|
437 |
+
"trial_params": null
|
438 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-280/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-280/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-280/trainer_state.json
ADDED
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 3.7333333333333334,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 280,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 0.49251970648765564,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.1196,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.2419582605361938,
|
321 |
+
"eval_runtime": 44.1478,
|
322 |
+
"eval_samples_per_second": 22.651,
|
323 |
+
"eval_steps_per_second": 2.831,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 0.5216273069381714,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.1375,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.2372699975967407,
|
336 |
+
"eval_runtime": 44.195,
|
337 |
+
"eval_samples_per_second": 22.627,
|
338 |
+
"eval_steps_per_second": 2.828,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 0.4238261580467224,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.1573,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.2556878328323364,
|
351 |
+
"eval_runtime": 44.2342,
|
352 |
+
"eval_samples_per_second": 22.607,
|
353 |
+
"eval_steps_per_second": 2.826,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 0.72156822681427,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.0865,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.2621344327926636,
|
366 |
+
"eval_runtime": 44.2027,
|
367 |
+
"eval_samples_per_second": 22.623,
|
368 |
+
"eval_steps_per_second": 2.828,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 0.5642262101173401,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.0993,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.2770243883132935,
|
381 |
+
"eval_runtime": 44.0511,
|
382 |
+
"eval_samples_per_second": 22.701,
|
383 |
+
"eval_steps_per_second": 2.838,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 0.7814852595329285,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.0989,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.2699764966964722,
|
396 |
+
"eval_runtime": 44.1962,
|
397 |
+
"eval_samples_per_second": 22.626,
|
398 |
+
"eval_steps_per_second": 2.828,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 0.698136031627655,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1381,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.2810109853744507,
|
411 |
+
"eval_runtime": 44.084,
|
412 |
+
"eval_samples_per_second": 22.684,
|
413 |
+
"eval_steps_per_second": 2.835,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 0.6332135796546936,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.0574,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.2708227634429932,
|
426 |
+
"eval_runtime": 43.9939,
|
427 |
+
"eval_samples_per_second": 22.73,
|
428 |
+
"eval_steps_per_second": 2.841,
|
429 |
+
"step": 280
|
430 |
+
}
|
431 |
+
],
|
432 |
+
"logging_steps": 10,
|
433 |
+
"max_steps": 675,
|
434 |
+
"num_input_tokens_seen": 0,
|
435 |
+
"num_train_epochs": 9,
|
436 |
+
"save_steps": 10,
|
437 |
+
"stateful_callbacks": {
|
438 |
+
"TrainerControl": {
|
439 |
+
"args": {
|
440 |
+
"should_epoch_stop": false,
|
441 |
+
"should_evaluate": false,
|
442 |
+
"should_log": false,
|
443 |
+
"should_save": true,
|
444 |
+
"should_training_stop": false
|
445 |
+
},
|
446 |
+
"attributes": {}
|
447 |
+
}
|
448 |
+
},
|
449 |
+
"total_flos": 4.58810015612928e+16,
|
450 |
+
"train_batch_size": 8,
|
451 |
+
"trial_name": null,
|
452 |
+
"trial_params": null
|
453 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-290/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-290/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-290/trainer_state.json
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 3.8666666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 290,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 0.49251970648765564,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.1196,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.2419582605361938,
|
321 |
+
"eval_runtime": 44.1478,
|
322 |
+
"eval_samples_per_second": 22.651,
|
323 |
+
"eval_steps_per_second": 2.831,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 0.5216273069381714,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.1375,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.2372699975967407,
|
336 |
+
"eval_runtime": 44.195,
|
337 |
+
"eval_samples_per_second": 22.627,
|
338 |
+
"eval_steps_per_second": 2.828,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 0.4238261580467224,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.1573,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.2556878328323364,
|
351 |
+
"eval_runtime": 44.2342,
|
352 |
+
"eval_samples_per_second": 22.607,
|
353 |
+
"eval_steps_per_second": 2.826,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 0.72156822681427,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.0865,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.2621344327926636,
|
366 |
+
"eval_runtime": 44.2027,
|
367 |
+
"eval_samples_per_second": 22.623,
|
368 |
+
"eval_steps_per_second": 2.828,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 0.5642262101173401,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.0993,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.2770243883132935,
|
381 |
+
"eval_runtime": 44.0511,
|
382 |
+
"eval_samples_per_second": 22.701,
|
383 |
+
"eval_steps_per_second": 2.838,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 0.7814852595329285,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.0989,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.2699764966964722,
|
396 |
+
"eval_runtime": 44.1962,
|
397 |
+
"eval_samples_per_second": 22.626,
|
398 |
+
"eval_steps_per_second": 2.828,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 0.698136031627655,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1381,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.2810109853744507,
|
411 |
+
"eval_runtime": 44.084,
|
412 |
+
"eval_samples_per_second": 22.684,
|
413 |
+
"eval_steps_per_second": 2.835,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 0.6332135796546936,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.0574,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.2708227634429932,
|
426 |
+
"eval_runtime": 43.9939,
|
427 |
+
"eval_samples_per_second": 22.73,
|
428 |
+
"eval_steps_per_second": 2.841,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 0.9241636991500854,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.0944,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.2758972644805908,
|
441 |
+
"eval_runtime": 43.9816,
|
442 |
+
"eval_samples_per_second": 22.737,
|
443 |
+
"eval_steps_per_second": 2.842,
|
444 |
+
"step": 290
|
445 |
+
}
|
446 |
+
],
|
447 |
+
"logging_steps": 10,
|
448 |
+
"max_steps": 675,
|
449 |
+
"num_input_tokens_seen": 0,
|
450 |
+
"num_train_epochs": 9,
|
451 |
+
"save_steps": 10,
|
452 |
+
"stateful_callbacks": {
|
453 |
+
"TrainerControl": {
|
454 |
+
"args": {
|
455 |
+
"should_epoch_stop": false,
|
456 |
+
"should_evaluate": false,
|
457 |
+
"should_log": false,
|
458 |
+
"should_save": true,
|
459 |
+
"should_training_stop": false
|
460 |
+
},
|
461 |
+
"attributes": {}
|
462 |
+
}
|
463 |
+
},
|
464 |
+
"total_flos": 4.75196087599104e+16,
|
465 |
+
"train_batch_size": 8,
|
466 |
+
"trial_name": null,
|
467 |
+
"trial_params": null
|
468 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-300/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-300/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-300/trainer_state.json
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 4.0,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 300,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 0.49251970648765564,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.1196,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.2419582605361938,
|
321 |
+
"eval_runtime": 44.1478,
|
322 |
+
"eval_samples_per_second": 22.651,
|
323 |
+
"eval_steps_per_second": 2.831,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 0.5216273069381714,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.1375,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.2372699975967407,
|
336 |
+
"eval_runtime": 44.195,
|
337 |
+
"eval_samples_per_second": 22.627,
|
338 |
+
"eval_steps_per_second": 2.828,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 0.4238261580467224,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.1573,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.2556878328323364,
|
351 |
+
"eval_runtime": 44.2342,
|
352 |
+
"eval_samples_per_second": 22.607,
|
353 |
+
"eval_steps_per_second": 2.826,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 0.72156822681427,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.0865,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.2621344327926636,
|
366 |
+
"eval_runtime": 44.2027,
|
367 |
+
"eval_samples_per_second": 22.623,
|
368 |
+
"eval_steps_per_second": 2.828,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 0.5642262101173401,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.0993,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.2770243883132935,
|
381 |
+
"eval_runtime": 44.0511,
|
382 |
+
"eval_samples_per_second": 22.701,
|
383 |
+
"eval_steps_per_second": 2.838,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 0.7814852595329285,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.0989,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.2699764966964722,
|
396 |
+
"eval_runtime": 44.1962,
|
397 |
+
"eval_samples_per_second": 22.626,
|
398 |
+
"eval_steps_per_second": 2.828,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 0.698136031627655,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1381,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.2810109853744507,
|
411 |
+
"eval_runtime": 44.084,
|
412 |
+
"eval_samples_per_second": 22.684,
|
413 |
+
"eval_steps_per_second": 2.835,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 0.6332135796546936,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.0574,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.2708227634429932,
|
426 |
+
"eval_runtime": 43.9939,
|
427 |
+
"eval_samples_per_second": 22.73,
|
428 |
+
"eval_steps_per_second": 2.841,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 0.9241636991500854,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.0944,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.2758972644805908,
|
441 |
+
"eval_runtime": 43.9816,
|
442 |
+
"eval_samples_per_second": 22.737,
|
443 |
+
"eval_steps_per_second": 2.842,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 0.639854371547699,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.0468,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.271722674369812,
|
456 |
+
"eval_runtime": 44.0382,
|
457 |
+
"eval_samples_per_second": 22.708,
|
458 |
+
"eval_steps_per_second": 2.838,
|
459 |
+
"step": 300
|
460 |
+
}
|
461 |
+
],
|
462 |
+
"logging_steps": 10,
|
463 |
+
"max_steps": 675,
|
464 |
+
"num_input_tokens_seen": 0,
|
465 |
+
"num_train_epochs": 9,
|
466 |
+
"save_steps": 10,
|
467 |
+
"stateful_callbacks": {
|
468 |
+
"TrainerControl": {
|
469 |
+
"args": {
|
470 |
+
"should_epoch_stop": false,
|
471 |
+
"should_evaluate": false,
|
472 |
+
"should_log": false,
|
473 |
+
"should_save": true,
|
474 |
+
"should_training_stop": false
|
475 |
+
},
|
476 |
+
"attributes": {}
|
477 |
+
}
|
478 |
+
},
|
479 |
+
"total_flos": 4.9158215958528e+16,
|
480 |
+
"train_batch_size": 8,
|
481 |
+
"trial_name": null,
|
482 |
+
"trial_params": null
|
483 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-310/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-310/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-310/trainer_state.json
ADDED
@@ -0,0 +1,498 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 4.133333333333334,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 310,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 0.49251970648765564,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.1196,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.2419582605361938,
|
321 |
+
"eval_runtime": 44.1478,
|
322 |
+
"eval_samples_per_second": 22.651,
|
323 |
+
"eval_steps_per_second": 2.831,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 0.5216273069381714,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.1375,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.2372699975967407,
|
336 |
+
"eval_runtime": 44.195,
|
337 |
+
"eval_samples_per_second": 22.627,
|
338 |
+
"eval_steps_per_second": 2.828,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 0.4238261580467224,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.1573,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.2556878328323364,
|
351 |
+
"eval_runtime": 44.2342,
|
352 |
+
"eval_samples_per_second": 22.607,
|
353 |
+
"eval_steps_per_second": 2.826,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 0.72156822681427,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.0865,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.2621344327926636,
|
366 |
+
"eval_runtime": 44.2027,
|
367 |
+
"eval_samples_per_second": 22.623,
|
368 |
+
"eval_steps_per_second": 2.828,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 0.5642262101173401,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.0993,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.2770243883132935,
|
381 |
+
"eval_runtime": 44.0511,
|
382 |
+
"eval_samples_per_second": 22.701,
|
383 |
+
"eval_steps_per_second": 2.838,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 0.7814852595329285,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.0989,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.2699764966964722,
|
396 |
+
"eval_runtime": 44.1962,
|
397 |
+
"eval_samples_per_second": 22.626,
|
398 |
+
"eval_steps_per_second": 2.828,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 0.698136031627655,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1381,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.2810109853744507,
|
411 |
+
"eval_runtime": 44.084,
|
412 |
+
"eval_samples_per_second": 22.684,
|
413 |
+
"eval_steps_per_second": 2.835,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 0.6332135796546936,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.0574,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.2708227634429932,
|
426 |
+
"eval_runtime": 43.9939,
|
427 |
+
"eval_samples_per_second": 22.73,
|
428 |
+
"eval_steps_per_second": 2.841,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 0.9241636991500854,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.0944,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.2758972644805908,
|
441 |
+
"eval_runtime": 43.9816,
|
442 |
+
"eval_samples_per_second": 22.737,
|
443 |
+
"eval_steps_per_second": 2.842,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 0.639854371547699,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.0468,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.271722674369812,
|
456 |
+
"eval_runtime": 44.0382,
|
457 |
+
"eval_samples_per_second": 22.708,
|
458 |
+
"eval_steps_per_second": 2.838,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.184584140777588,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.036,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.3531861305236816,
|
471 |
+
"eval_runtime": 44.1195,
|
472 |
+
"eval_samples_per_second": 22.666,
|
473 |
+
"eval_steps_per_second": 2.833,
|
474 |
+
"step": 310
|
475 |
+
}
|
476 |
+
],
|
477 |
+
"logging_steps": 10,
|
478 |
+
"max_steps": 675,
|
479 |
+
"num_input_tokens_seen": 0,
|
480 |
+
"num_train_epochs": 9,
|
481 |
+
"save_steps": 10,
|
482 |
+
"stateful_callbacks": {
|
483 |
+
"TrainerControl": {
|
484 |
+
"args": {
|
485 |
+
"should_epoch_stop": false,
|
486 |
+
"should_evaluate": false,
|
487 |
+
"should_log": false,
|
488 |
+
"should_save": true,
|
489 |
+
"should_training_stop": false
|
490 |
+
},
|
491 |
+
"attributes": {}
|
492 |
+
}
|
493 |
+
},
|
494 |
+
"total_flos": 5.07968231571456e+16,
|
495 |
+
"train_batch_size": 8,
|
496 |
+
"trial_name": null,
|
497 |
+
"trial_params": null
|
498 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-320/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-320/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-320/trainer_state.json
ADDED
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 4.266666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 320,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 0.49251970648765564,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.1196,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.2419582605361938,
|
321 |
+
"eval_runtime": 44.1478,
|
322 |
+
"eval_samples_per_second": 22.651,
|
323 |
+
"eval_steps_per_second": 2.831,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 0.5216273069381714,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.1375,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.2372699975967407,
|
336 |
+
"eval_runtime": 44.195,
|
337 |
+
"eval_samples_per_second": 22.627,
|
338 |
+
"eval_steps_per_second": 2.828,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 0.4238261580467224,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.1573,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.2556878328323364,
|
351 |
+
"eval_runtime": 44.2342,
|
352 |
+
"eval_samples_per_second": 22.607,
|
353 |
+
"eval_steps_per_second": 2.826,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 0.72156822681427,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.0865,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.2621344327926636,
|
366 |
+
"eval_runtime": 44.2027,
|
367 |
+
"eval_samples_per_second": 22.623,
|
368 |
+
"eval_steps_per_second": 2.828,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 0.5642262101173401,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.0993,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.2770243883132935,
|
381 |
+
"eval_runtime": 44.0511,
|
382 |
+
"eval_samples_per_second": 22.701,
|
383 |
+
"eval_steps_per_second": 2.838,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 0.7814852595329285,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.0989,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.2699764966964722,
|
396 |
+
"eval_runtime": 44.1962,
|
397 |
+
"eval_samples_per_second": 22.626,
|
398 |
+
"eval_steps_per_second": 2.828,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 0.698136031627655,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1381,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.2810109853744507,
|
411 |
+
"eval_runtime": 44.084,
|
412 |
+
"eval_samples_per_second": 22.684,
|
413 |
+
"eval_steps_per_second": 2.835,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 0.6332135796546936,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.0574,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.2708227634429932,
|
426 |
+
"eval_runtime": 43.9939,
|
427 |
+
"eval_samples_per_second": 22.73,
|
428 |
+
"eval_steps_per_second": 2.841,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 0.9241636991500854,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.0944,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.2758972644805908,
|
441 |
+
"eval_runtime": 43.9816,
|
442 |
+
"eval_samples_per_second": 22.737,
|
443 |
+
"eval_steps_per_second": 2.842,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 0.639854371547699,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.0468,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.271722674369812,
|
456 |
+
"eval_runtime": 44.0382,
|
457 |
+
"eval_samples_per_second": 22.708,
|
458 |
+
"eval_steps_per_second": 2.838,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.184584140777588,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.036,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.3531861305236816,
|
471 |
+
"eval_runtime": 44.1195,
|
472 |
+
"eval_samples_per_second": 22.666,
|
473 |
+
"eval_steps_per_second": 2.833,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 0.9589372873306274,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.0382,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.3156057596206665,
|
486 |
+
"eval_runtime": 43.996,
|
487 |
+
"eval_samples_per_second": 22.729,
|
488 |
+
"eval_steps_per_second": 2.841,
|
489 |
+
"step": 320
|
490 |
+
}
|
491 |
+
],
|
492 |
+
"logging_steps": 10,
|
493 |
+
"max_steps": 675,
|
494 |
+
"num_input_tokens_seen": 0,
|
495 |
+
"num_train_epochs": 9,
|
496 |
+
"save_steps": 10,
|
497 |
+
"stateful_callbacks": {
|
498 |
+
"TrainerControl": {
|
499 |
+
"args": {
|
500 |
+
"should_epoch_stop": false,
|
501 |
+
"should_evaluate": false,
|
502 |
+
"should_log": false,
|
503 |
+
"should_save": true,
|
504 |
+
"should_training_stop": false
|
505 |
+
},
|
506 |
+
"attributes": {}
|
507 |
+
}
|
508 |
+
},
|
509 |
+
"total_flos": 5.24354303557632e+16,
|
510 |
+
"train_batch_size": 8,
|
511 |
+
"trial_name": null,
|
512 |
+
"trial_params": null
|
513 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-330/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-330/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-330/trainer_state.json
ADDED
@@ -0,0 +1,528 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 4.4,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 330,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 0.49251970648765564,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.1196,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.2419582605361938,
|
321 |
+
"eval_runtime": 44.1478,
|
322 |
+
"eval_samples_per_second": 22.651,
|
323 |
+
"eval_steps_per_second": 2.831,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 0.5216273069381714,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.1375,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.2372699975967407,
|
336 |
+
"eval_runtime": 44.195,
|
337 |
+
"eval_samples_per_second": 22.627,
|
338 |
+
"eval_steps_per_second": 2.828,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 0.4238261580467224,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.1573,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.2556878328323364,
|
351 |
+
"eval_runtime": 44.2342,
|
352 |
+
"eval_samples_per_second": 22.607,
|
353 |
+
"eval_steps_per_second": 2.826,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 0.72156822681427,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.0865,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.2621344327926636,
|
366 |
+
"eval_runtime": 44.2027,
|
367 |
+
"eval_samples_per_second": 22.623,
|
368 |
+
"eval_steps_per_second": 2.828,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 0.5642262101173401,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.0993,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.2770243883132935,
|
381 |
+
"eval_runtime": 44.0511,
|
382 |
+
"eval_samples_per_second": 22.701,
|
383 |
+
"eval_steps_per_second": 2.838,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 0.7814852595329285,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.0989,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.2699764966964722,
|
396 |
+
"eval_runtime": 44.1962,
|
397 |
+
"eval_samples_per_second": 22.626,
|
398 |
+
"eval_steps_per_second": 2.828,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 0.698136031627655,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1381,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.2810109853744507,
|
411 |
+
"eval_runtime": 44.084,
|
412 |
+
"eval_samples_per_second": 22.684,
|
413 |
+
"eval_steps_per_second": 2.835,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 0.6332135796546936,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.0574,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.2708227634429932,
|
426 |
+
"eval_runtime": 43.9939,
|
427 |
+
"eval_samples_per_second": 22.73,
|
428 |
+
"eval_steps_per_second": 2.841,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 0.9241636991500854,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.0944,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.2758972644805908,
|
441 |
+
"eval_runtime": 43.9816,
|
442 |
+
"eval_samples_per_second": 22.737,
|
443 |
+
"eval_steps_per_second": 2.842,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 0.639854371547699,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.0468,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.271722674369812,
|
456 |
+
"eval_runtime": 44.0382,
|
457 |
+
"eval_samples_per_second": 22.708,
|
458 |
+
"eval_steps_per_second": 2.838,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.184584140777588,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.036,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.3531861305236816,
|
471 |
+
"eval_runtime": 44.1195,
|
472 |
+
"eval_samples_per_second": 22.666,
|
473 |
+
"eval_steps_per_second": 2.833,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 0.9589372873306274,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.0382,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.3156057596206665,
|
486 |
+
"eval_runtime": 43.996,
|
487 |
+
"eval_samples_per_second": 22.729,
|
488 |
+
"eval_steps_per_second": 2.841,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.099959135055542,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.0621,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.3207496404647827,
|
501 |
+
"eval_runtime": 44.0529,
|
502 |
+
"eval_samples_per_second": 22.7,
|
503 |
+
"eval_steps_per_second": 2.837,
|
504 |
+
"step": 330
|
505 |
+
}
|
506 |
+
],
|
507 |
+
"logging_steps": 10,
|
508 |
+
"max_steps": 675,
|
509 |
+
"num_input_tokens_seen": 0,
|
510 |
+
"num_train_epochs": 9,
|
511 |
+
"save_steps": 10,
|
512 |
+
"stateful_callbacks": {
|
513 |
+
"TrainerControl": {
|
514 |
+
"args": {
|
515 |
+
"should_epoch_stop": false,
|
516 |
+
"should_evaluate": false,
|
517 |
+
"should_log": false,
|
518 |
+
"should_save": true,
|
519 |
+
"should_training_stop": false
|
520 |
+
},
|
521 |
+
"attributes": {}
|
522 |
+
}
|
523 |
+
},
|
524 |
+
"total_flos": 5.40740375543808e+16,
|
525 |
+
"train_batch_size": 8,
|
526 |
+
"trial_name": null,
|
527 |
+
"trial_params": null
|
528 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-340/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-340/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-340/trainer_state.json
ADDED
@@ -0,0 +1,543 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 4.533333333333333,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 340,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 0.49251970648765564,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.1196,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.2419582605361938,
|
321 |
+
"eval_runtime": 44.1478,
|
322 |
+
"eval_samples_per_second": 22.651,
|
323 |
+
"eval_steps_per_second": 2.831,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 0.5216273069381714,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.1375,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.2372699975967407,
|
336 |
+
"eval_runtime": 44.195,
|
337 |
+
"eval_samples_per_second": 22.627,
|
338 |
+
"eval_steps_per_second": 2.828,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 0.4238261580467224,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.1573,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.2556878328323364,
|
351 |
+
"eval_runtime": 44.2342,
|
352 |
+
"eval_samples_per_second": 22.607,
|
353 |
+
"eval_steps_per_second": 2.826,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 0.72156822681427,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.0865,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.2621344327926636,
|
366 |
+
"eval_runtime": 44.2027,
|
367 |
+
"eval_samples_per_second": 22.623,
|
368 |
+
"eval_steps_per_second": 2.828,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 0.5642262101173401,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.0993,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.2770243883132935,
|
381 |
+
"eval_runtime": 44.0511,
|
382 |
+
"eval_samples_per_second": 22.701,
|
383 |
+
"eval_steps_per_second": 2.838,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 0.7814852595329285,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.0989,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.2699764966964722,
|
396 |
+
"eval_runtime": 44.1962,
|
397 |
+
"eval_samples_per_second": 22.626,
|
398 |
+
"eval_steps_per_second": 2.828,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 0.698136031627655,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1381,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.2810109853744507,
|
411 |
+
"eval_runtime": 44.084,
|
412 |
+
"eval_samples_per_second": 22.684,
|
413 |
+
"eval_steps_per_second": 2.835,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 0.6332135796546936,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.0574,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.2708227634429932,
|
426 |
+
"eval_runtime": 43.9939,
|
427 |
+
"eval_samples_per_second": 22.73,
|
428 |
+
"eval_steps_per_second": 2.841,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 0.9241636991500854,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.0944,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.2758972644805908,
|
441 |
+
"eval_runtime": 43.9816,
|
442 |
+
"eval_samples_per_second": 22.737,
|
443 |
+
"eval_steps_per_second": 2.842,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 0.639854371547699,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.0468,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.271722674369812,
|
456 |
+
"eval_runtime": 44.0382,
|
457 |
+
"eval_samples_per_second": 22.708,
|
458 |
+
"eval_steps_per_second": 2.838,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.184584140777588,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.036,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.3531861305236816,
|
471 |
+
"eval_runtime": 44.1195,
|
472 |
+
"eval_samples_per_second": 22.666,
|
473 |
+
"eval_steps_per_second": 2.833,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 0.9589372873306274,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.0382,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.3156057596206665,
|
486 |
+
"eval_runtime": 43.996,
|
487 |
+
"eval_samples_per_second": 22.729,
|
488 |
+
"eval_steps_per_second": 2.841,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.099959135055542,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.0621,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.3207496404647827,
|
501 |
+
"eval_runtime": 44.0529,
|
502 |
+
"eval_samples_per_second": 22.7,
|
503 |
+
"eval_steps_per_second": 2.837,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.2086342573165894,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0585,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.3306328058242798,
|
516 |
+
"eval_runtime": 43.8749,
|
517 |
+
"eval_samples_per_second": 22.792,
|
518 |
+
"eval_steps_per_second": 2.849,
|
519 |
+
"step": 340
|
520 |
+
}
|
521 |
+
],
|
522 |
+
"logging_steps": 10,
|
523 |
+
"max_steps": 675,
|
524 |
+
"num_input_tokens_seen": 0,
|
525 |
+
"num_train_epochs": 9,
|
526 |
+
"save_steps": 10,
|
527 |
+
"stateful_callbacks": {
|
528 |
+
"TrainerControl": {
|
529 |
+
"args": {
|
530 |
+
"should_epoch_stop": false,
|
531 |
+
"should_evaluate": false,
|
532 |
+
"should_log": false,
|
533 |
+
"should_save": true,
|
534 |
+
"should_training_stop": false
|
535 |
+
},
|
536 |
+
"attributes": {}
|
537 |
+
}
|
538 |
+
},
|
539 |
+
"total_flos": 5.57126447529984e+16,
|
540 |
+
"train_batch_size": 8,
|
541 |
+
"trial_name": null,
|
542 |
+
"trial_params": null
|
543 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-350/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-350/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-350/trainer_state.json
ADDED
@@ -0,0 +1,558 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 4.666666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 350,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 0.49251970648765564,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.1196,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.2419582605361938,
|
321 |
+
"eval_runtime": 44.1478,
|
322 |
+
"eval_samples_per_second": 22.651,
|
323 |
+
"eval_steps_per_second": 2.831,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 0.5216273069381714,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.1375,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.2372699975967407,
|
336 |
+
"eval_runtime": 44.195,
|
337 |
+
"eval_samples_per_second": 22.627,
|
338 |
+
"eval_steps_per_second": 2.828,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 0.4238261580467224,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.1573,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.2556878328323364,
|
351 |
+
"eval_runtime": 44.2342,
|
352 |
+
"eval_samples_per_second": 22.607,
|
353 |
+
"eval_steps_per_second": 2.826,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 0.72156822681427,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.0865,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.2621344327926636,
|
366 |
+
"eval_runtime": 44.2027,
|
367 |
+
"eval_samples_per_second": 22.623,
|
368 |
+
"eval_steps_per_second": 2.828,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 0.5642262101173401,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.0993,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.2770243883132935,
|
381 |
+
"eval_runtime": 44.0511,
|
382 |
+
"eval_samples_per_second": 22.701,
|
383 |
+
"eval_steps_per_second": 2.838,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 0.7814852595329285,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.0989,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.2699764966964722,
|
396 |
+
"eval_runtime": 44.1962,
|
397 |
+
"eval_samples_per_second": 22.626,
|
398 |
+
"eval_steps_per_second": 2.828,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 0.698136031627655,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1381,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.2810109853744507,
|
411 |
+
"eval_runtime": 44.084,
|
412 |
+
"eval_samples_per_second": 22.684,
|
413 |
+
"eval_steps_per_second": 2.835,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 0.6332135796546936,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.0574,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.2708227634429932,
|
426 |
+
"eval_runtime": 43.9939,
|
427 |
+
"eval_samples_per_second": 22.73,
|
428 |
+
"eval_steps_per_second": 2.841,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 0.9241636991500854,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.0944,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.2758972644805908,
|
441 |
+
"eval_runtime": 43.9816,
|
442 |
+
"eval_samples_per_second": 22.737,
|
443 |
+
"eval_steps_per_second": 2.842,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 0.639854371547699,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.0468,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.271722674369812,
|
456 |
+
"eval_runtime": 44.0382,
|
457 |
+
"eval_samples_per_second": 22.708,
|
458 |
+
"eval_steps_per_second": 2.838,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.184584140777588,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.036,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.3531861305236816,
|
471 |
+
"eval_runtime": 44.1195,
|
472 |
+
"eval_samples_per_second": 22.666,
|
473 |
+
"eval_steps_per_second": 2.833,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 0.9589372873306274,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.0382,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.3156057596206665,
|
486 |
+
"eval_runtime": 43.996,
|
487 |
+
"eval_samples_per_second": 22.729,
|
488 |
+
"eval_steps_per_second": 2.841,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.099959135055542,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.0621,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.3207496404647827,
|
501 |
+
"eval_runtime": 44.0529,
|
502 |
+
"eval_samples_per_second": 22.7,
|
503 |
+
"eval_steps_per_second": 2.837,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.2086342573165894,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0585,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.3306328058242798,
|
516 |
+
"eval_runtime": 43.8749,
|
517 |
+
"eval_samples_per_second": 22.792,
|
518 |
+
"eval_steps_per_second": 2.849,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 0.9267418384552002,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.0599,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.324584722518921,
|
531 |
+
"eval_runtime": 43.853,
|
532 |
+
"eval_samples_per_second": 22.803,
|
533 |
+
"eval_steps_per_second": 2.85,
|
534 |
+
"step": 350
|
535 |
+
}
|
536 |
+
],
|
537 |
+
"logging_steps": 10,
|
538 |
+
"max_steps": 675,
|
539 |
+
"num_input_tokens_seen": 0,
|
540 |
+
"num_train_epochs": 9,
|
541 |
+
"save_steps": 10,
|
542 |
+
"stateful_callbacks": {
|
543 |
+
"TrainerControl": {
|
544 |
+
"args": {
|
545 |
+
"should_epoch_stop": false,
|
546 |
+
"should_evaluate": false,
|
547 |
+
"should_log": false,
|
548 |
+
"should_save": true,
|
549 |
+
"should_training_stop": false
|
550 |
+
},
|
551 |
+
"attributes": {}
|
552 |
+
}
|
553 |
+
},
|
554 |
+
"total_flos": 5.7351251951616e+16,
|
555 |
+
"train_batch_size": 8,
|
556 |
+
"trial_name": null,
|
557 |
+
"trial_params": null
|
558 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-360/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-360/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-360/trainer_state.json
ADDED
@@ -0,0 +1,573 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 4.8,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 360,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 0.49251970648765564,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.1196,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.2419582605361938,
|
321 |
+
"eval_runtime": 44.1478,
|
322 |
+
"eval_samples_per_second": 22.651,
|
323 |
+
"eval_steps_per_second": 2.831,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 0.5216273069381714,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.1375,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.2372699975967407,
|
336 |
+
"eval_runtime": 44.195,
|
337 |
+
"eval_samples_per_second": 22.627,
|
338 |
+
"eval_steps_per_second": 2.828,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 0.4238261580467224,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.1573,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.2556878328323364,
|
351 |
+
"eval_runtime": 44.2342,
|
352 |
+
"eval_samples_per_second": 22.607,
|
353 |
+
"eval_steps_per_second": 2.826,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 0.72156822681427,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.0865,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.2621344327926636,
|
366 |
+
"eval_runtime": 44.2027,
|
367 |
+
"eval_samples_per_second": 22.623,
|
368 |
+
"eval_steps_per_second": 2.828,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 0.5642262101173401,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.0993,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.2770243883132935,
|
381 |
+
"eval_runtime": 44.0511,
|
382 |
+
"eval_samples_per_second": 22.701,
|
383 |
+
"eval_steps_per_second": 2.838,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 0.7814852595329285,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.0989,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.2699764966964722,
|
396 |
+
"eval_runtime": 44.1962,
|
397 |
+
"eval_samples_per_second": 22.626,
|
398 |
+
"eval_steps_per_second": 2.828,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 0.698136031627655,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1381,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.2810109853744507,
|
411 |
+
"eval_runtime": 44.084,
|
412 |
+
"eval_samples_per_second": 22.684,
|
413 |
+
"eval_steps_per_second": 2.835,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 0.6332135796546936,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.0574,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.2708227634429932,
|
426 |
+
"eval_runtime": 43.9939,
|
427 |
+
"eval_samples_per_second": 22.73,
|
428 |
+
"eval_steps_per_second": 2.841,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 0.9241636991500854,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.0944,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.2758972644805908,
|
441 |
+
"eval_runtime": 43.9816,
|
442 |
+
"eval_samples_per_second": 22.737,
|
443 |
+
"eval_steps_per_second": 2.842,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 0.639854371547699,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.0468,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.271722674369812,
|
456 |
+
"eval_runtime": 44.0382,
|
457 |
+
"eval_samples_per_second": 22.708,
|
458 |
+
"eval_steps_per_second": 2.838,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.184584140777588,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.036,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.3531861305236816,
|
471 |
+
"eval_runtime": 44.1195,
|
472 |
+
"eval_samples_per_second": 22.666,
|
473 |
+
"eval_steps_per_second": 2.833,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 0.9589372873306274,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.0382,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.3156057596206665,
|
486 |
+
"eval_runtime": 43.996,
|
487 |
+
"eval_samples_per_second": 22.729,
|
488 |
+
"eval_steps_per_second": 2.841,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.099959135055542,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.0621,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.3207496404647827,
|
501 |
+
"eval_runtime": 44.0529,
|
502 |
+
"eval_samples_per_second": 22.7,
|
503 |
+
"eval_steps_per_second": 2.837,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.2086342573165894,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0585,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.3306328058242798,
|
516 |
+
"eval_runtime": 43.8749,
|
517 |
+
"eval_samples_per_second": 22.792,
|
518 |
+
"eval_steps_per_second": 2.849,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 0.9267418384552002,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.0599,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.324584722518921,
|
531 |
+
"eval_runtime": 43.853,
|
532 |
+
"eval_samples_per_second": 22.803,
|
533 |
+
"eval_steps_per_second": 2.85,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 1.116028070449829,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.0048,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.3211394548416138,
|
546 |
+
"eval_runtime": 44.1843,
|
547 |
+
"eval_samples_per_second": 22.632,
|
548 |
+
"eval_steps_per_second": 2.829,
|
549 |
+
"step": 360
|
550 |
+
}
|
551 |
+
],
|
552 |
+
"logging_steps": 10,
|
553 |
+
"max_steps": 675,
|
554 |
+
"num_input_tokens_seen": 0,
|
555 |
+
"num_train_epochs": 9,
|
556 |
+
"save_steps": 10,
|
557 |
+
"stateful_callbacks": {
|
558 |
+
"TrainerControl": {
|
559 |
+
"args": {
|
560 |
+
"should_epoch_stop": false,
|
561 |
+
"should_evaluate": false,
|
562 |
+
"should_log": false,
|
563 |
+
"should_save": true,
|
564 |
+
"should_training_stop": false
|
565 |
+
},
|
566 |
+
"attributes": {}
|
567 |
+
}
|
568 |
+
},
|
569 |
+
"total_flos": 5.89898591502336e+16,
|
570 |
+
"train_batch_size": 8,
|
571 |
+
"trial_name": null,
|
572 |
+
"trial_params": null
|
573 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-370/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-370/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-370/trainer_state.json
ADDED
@@ -0,0 +1,588 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 4.933333333333334,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 370,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 0.49251970648765564,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.1196,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.2419582605361938,
|
321 |
+
"eval_runtime": 44.1478,
|
322 |
+
"eval_samples_per_second": 22.651,
|
323 |
+
"eval_steps_per_second": 2.831,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 0.5216273069381714,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.1375,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.2372699975967407,
|
336 |
+
"eval_runtime": 44.195,
|
337 |
+
"eval_samples_per_second": 22.627,
|
338 |
+
"eval_steps_per_second": 2.828,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 0.4238261580467224,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.1573,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.2556878328323364,
|
351 |
+
"eval_runtime": 44.2342,
|
352 |
+
"eval_samples_per_second": 22.607,
|
353 |
+
"eval_steps_per_second": 2.826,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 0.72156822681427,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.0865,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.2621344327926636,
|
366 |
+
"eval_runtime": 44.2027,
|
367 |
+
"eval_samples_per_second": 22.623,
|
368 |
+
"eval_steps_per_second": 2.828,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 0.5642262101173401,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.0993,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.2770243883132935,
|
381 |
+
"eval_runtime": 44.0511,
|
382 |
+
"eval_samples_per_second": 22.701,
|
383 |
+
"eval_steps_per_second": 2.838,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 0.7814852595329285,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.0989,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.2699764966964722,
|
396 |
+
"eval_runtime": 44.1962,
|
397 |
+
"eval_samples_per_second": 22.626,
|
398 |
+
"eval_steps_per_second": 2.828,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 0.698136031627655,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1381,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.2810109853744507,
|
411 |
+
"eval_runtime": 44.084,
|
412 |
+
"eval_samples_per_second": 22.684,
|
413 |
+
"eval_steps_per_second": 2.835,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 0.6332135796546936,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.0574,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.2708227634429932,
|
426 |
+
"eval_runtime": 43.9939,
|
427 |
+
"eval_samples_per_second": 22.73,
|
428 |
+
"eval_steps_per_second": 2.841,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 0.9241636991500854,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.0944,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.2758972644805908,
|
441 |
+
"eval_runtime": 43.9816,
|
442 |
+
"eval_samples_per_second": 22.737,
|
443 |
+
"eval_steps_per_second": 2.842,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 0.639854371547699,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.0468,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.271722674369812,
|
456 |
+
"eval_runtime": 44.0382,
|
457 |
+
"eval_samples_per_second": 22.708,
|
458 |
+
"eval_steps_per_second": 2.838,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.184584140777588,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.036,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.3531861305236816,
|
471 |
+
"eval_runtime": 44.1195,
|
472 |
+
"eval_samples_per_second": 22.666,
|
473 |
+
"eval_steps_per_second": 2.833,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 0.9589372873306274,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.0382,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.3156057596206665,
|
486 |
+
"eval_runtime": 43.996,
|
487 |
+
"eval_samples_per_second": 22.729,
|
488 |
+
"eval_steps_per_second": 2.841,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.099959135055542,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.0621,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.3207496404647827,
|
501 |
+
"eval_runtime": 44.0529,
|
502 |
+
"eval_samples_per_second": 22.7,
|
503 |
+
"eval_steps_per_second": 2.837,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.2086342573165894,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0585,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.3306328058242798,
|
516 |
+
"eval_runtime": 43.8749,
|
517 |
+
"eval_samples_per_second": 22.792,
|
518 |
+
"eval_steps_per_second": 2.849,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 0.9267418384552002,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.0599,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.324584722518921,
|
531 |
+
"eval_runtime": 43.853,
|
532 |
+
"eval_samples_per_second": 22.803,
|
533 |
+
"eval_steps_per_second": 2.85,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 1.116028070449829,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.0048,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.3211394548416138,
|
546 |
+
"eval_runtime": 44.1843,
|
547 |
+
"eval_samples_per_second": 22.632,
|
548 |
+
"eval_steps_per_second": 2.829,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 1.0464606285095215,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.0147,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.3230206966400146,
|
561 |
+
"eval_runtime": 44.0559,
|
562 |
+
"eval_samples_per_second": 22.698,
|
563 |
+
"eval_steps_per_second": 2.837,
|
564 |
+
"step": 370
|
565 |
+
}
|
566 |
+
],
|
567 |
+
"logging_steps": 10,
|
568 |
+
"max_steps": 675,
|
569 |
+
"num_input_tokens_seen": 0,
|
570 |
+
"num_train_epochs": 9,
|
571 |
+
"save_steps": 10,
|
572 |
+
"stateful_callbacks": {
|
573 |
+
"TrainerControl": {
|
574 |
+
"args": {
|
575 |
+
"should_epoch_stop": false,
|
576 |
+
"should_evaluate": false,
|
577 |
+
"should_log": false,
|
578 |
+
"should_save": true,
|
579 |
+
"should_training_stop": false
|
580 |
+
},
|
581 |
+
"attributes": {}
|
582 |
+
}
|
583 |
+
},
|
584 |
+
"total_flos": 6.06284663488512e+16,
|
585 |
+
"train_batch_size": 8,
|
586 |
+
"trial_name": null,
|
587 |
+
"trial_params": null
|
588 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-380/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-380/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-380/trainer_state.json
ADDED
@@ -0,0 +1,603 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 5.066666666666666,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 380,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 0.49251970648765564,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.1196,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.2419582605361938,
|
321 |
+
"eval_runtime": 44.1478,
|
322 |
+
"eval_samples_per_second": 22.651,
|
323 |
+
"eval_steps_per_second": 2.831,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 0.5216273069381714,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.1375,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.2372699975967407,
|
336 |
+
"eval_runtime": 44.195,
|
337 |
+
"eval_samples_per_second": 22.627,
|
338 |
+
"eval_steps_per_second": 2.828,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 0.4238261580467224,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.1573,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.2556878328323364,
|
351 |
+
"eval_runtime": 44.2342,
|
352 |
+
"eval_samples_per_second": 22.607,
|
353 |
+
"eval_steps_per_second": 2.826,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 0.72156822681427,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.0865,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.2621344327926636,
|
366 |
+
"eval_runtime": 44.2027,
|
367 |
+
"eval_samples_per_second": 22.623,
|
368 |
+
"eval_steps_per_second": 2.828,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 0.5642262101173401,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.0993,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.2770243883132935,
|
381 |
+
"eval_runtime": 44.0511,
|
382 |
+
"eval_samples_per_second": 22.701,
|
383 |
+
"eval_steps_per_second": 2.838,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 0.7814852595329285,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.0989,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.2699764966964722,
|
396 |
+
"eval_runtime": 44.1962,
|
397 |
+
"eval_samples_per_second": 22.626,
|
398 |
+
"eval_steps_per_second": 2.828,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 0.698136031627655,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1381,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.2810109853744507,
|
411 |
+
"eval_runtime": 44.084,
|
412 |
+
"eval_samples_per_second": 22.684,
|
413 |
+
"eval_steps_per_second": 2.835,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 0.6332135796546936,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.0574,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.2708227634429932,
|
426 |
+
"eval_runtime": 43.9939,
|
427 |
+
"eval_samples_per_second": 22.73,
|
428 |
+
"eval_steps_per_second": 2.841,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 0.9241636991500854,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.0944,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.2758972644805908,
|
441 |
+
"eval_runtime": 43.9816,
|
442 |
+
"eval_samples_per_second": 22.737,
|
443 |
+
"eval_steps_per_second": 2.842,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 0.639854371547699,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.0468,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.271722674369812,
|
456 |
+
"eval_runtime": 44.0382,
|
457 |
+
"eval_samples_per_second": 22.708,
|
458 |
+
"eval_steps_per_second": 2.838,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.184584140777588,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.036,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.3531861305236816,
|
471 |
+
"eval_runtime": 44.1195,
|
472 |
+
"eval_samples_per_second": 22.666,
|
473 |
+
"eval_steps_per_second": 2.833,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 0.9589372873306274,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.0382,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.3156057596206665,
|
486 |
+
"eval_runtime": 43.996,
|
487 |
+
"eval_samples_per_second": 22.729,
|
488 |
+
"eval_steps_per_second": 2.841,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.099959135055542,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.0621,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.3207496404647827,
|
501 |
+
"eval_runtime": 44.0529,
|
502 |
+
"eval_samples_per_second": 22.7,
|
503 |
+
"eval_steps_per_second": 2.837,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.2086342573165894,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0585,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.3306328058242798,
|
516 |
+
"eval_runtime": 43.8749,
|
517 |
+
"eval_samples_per_second": 22.792,
|
518 |
+
"eval_steps_per_second": 2.849,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 0.9267418384552002,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.0599,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.324584722518921,
|
531 |
+
"eval_runtime": 43.853,
|
532 |
+
"eval_samples_per_second": 22.803,
|
533 |
+
"eval_steps_per_second": 2.85,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 1.116028070449829,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.0048,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.3211394548416138,
|
546 |
+
"eval_runtime": 44.1843,
|
547 |
+
"eval_samples_per_second": 22.632,
|
548 |
+
"eval_steps_per_second": 2.829,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 1.0464606285095215,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.0147,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.3230206966400146,
|
561 |
+
"eval_runtime": 44.0559,
|
562 |
+
"eval_samples_per_second": 22.698,
|
563 |
+
"eval_steps_per_second": 2.837,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.1091907024383545,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0073,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.3765190839767456,
|
576 |
+
"eval_runtime": 44.0219,
|
577 |
+
"eval_samples_per_second": 22.716,
|
578 |
+
"eval_steps_per_second": 2.839,
|
579 |
+
"step": 380
|
580 |
+
}
|
581 |
+
],
|
582 |
+
"logging_steps": 10,
|
583 |
+
"max_steps": 675,
|
584 |
+
"num_input_tokens_seen": 0,
|
585 |
+
"num_train_epochs": 9,
|
586 |
+
"save_steps": 10,
|
587 |
+
"stateful_callbacks": {
|
588 |
+
"TrainerControl": {
|
589 |
+
"args": {
|
590 |
+
"should_epoch_stop": false,
|
591 |
+
"should_evaluate": false,
|
592 |
+
"should_log": false,
|
593 |
+
"should_save": true,
|
594 |
+
"should_training_stop": false
|
595 |
+
},
|
596 |
+
"attributes": {}
|
597 |
+
}
|
598 |
+
},
|
599 |
+
"total_flos": 6.22670735474688e+16,
|
600 |
+
"train_batch_size": 8,
|
601 |
+
"trial_name": null,
|
602 |
+
"trial_params": null
|
603 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-390/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-390/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-390/trainer_state.json
ADDED
@@ -0,0 +1,618 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 1.2202378511428833,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-70",
|
4 |
+
"epoch": 5.2,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 390,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.30893075466156006,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 1.1733,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 1.2328641414642334,
|
21 |
+
"eval_runtime": 44.0263,
|
22 |
+
"eval_samples_per_second": 22.714,
|
23 |
+
"eval_steps_per_second": 2.839,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.17991244792938232,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 1.2254,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 1.228402853012085,
|
36 |
+
"eval_runtime": 43.8933,
|
37 |
+
"eval_samples_per_second": 22.783,
|
38 |
+
"eval_steps_per_second": 2.848,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.1784493625164032,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 1.2043,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 1.2251635789871216,
|
51 |
+
"eval_runtime": 44.0062,
|
52 |
+
"eval_samples_per_second": 22.724,
|
53 |
+
"eval_steps_per_second": 2.841,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.21547502279281616,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 1.1879,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 1.2234975099563599,
|
66 |
+
"eval_runtime": 44.0274,
|
67 |
+
"eval_samples_per_second": 22.713,
|
68 |
+
"eval_steps_per_second": 2.839,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.22946320474147797,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 1.2158,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 1.2221243381500244,
|
81 |
+
"eval_runtime": 44.1867,
|
82 |
+
"eval_samples_per_second": 22.631,
|
83 |
+
"eval_steps_per_second": 2.829,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.23243005573749542,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 1.1901,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 1.220987319946289,
|
96 |
+
"eval_runtime": 44.0985,
|
97 |
+
"eval_samples_per_second": 22.677,
|
98 |
+
"eval_steps_per_second": 2.835,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.19336333870887756,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 1.2074,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 1.2202378511428833,
|
111 |
+
"eval_runtime": 43.9577,
|
112 |
+
"eval_samples_per_second": 22.749,
|
113 |
+
"eval_steps_per_second": 2.844,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.1610746681690216,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 1.1434,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 1.22028386592865,
|
126 |
+
"eval_runtime": 43.903,
|
127 |
+
"eval_samples_per_second": 22.777,
|
128 |
+
"eval_steps_per_second": 2.847,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.18507854640483856,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 1.1506,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 1.221218466758728,
|
141 |
+
"eval_runtime": 43.981,
|
142 |
+
"eval_samples_per_second": 22.737,
|
143 |
+
"eval_steps_per_second": 2.842,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.17022280395030975,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 1.1761,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 1.2210596799850464,
|
156 |
+
"eval_runtime": 43.9473,
|
157 |
+
"eval_samples_per_second": 22.755,
|
158 |
+
"eval_steps_per_second": 2.844,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.27772682905197144,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 1.2465,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 1.2218444347381592,
|
171 |
+
"eval_runtime": 43.8733,
|
172 |
+
"eval_samples_per_second": 22.793,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.2792418599128723,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 1.1664,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 1.2227915525436401,
|
186 |
+
"eval_runtime": 43.869,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.32393139600753784,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 1.1835,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 1.2218685150146484,
|
201 |
+
"eval_runtime": 43.878,
|
202 |
+
"eval_samples_per_second": 22.79,
|
203 |
+
"eval_steps_per_second": 2.849,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 0.3198949694633484,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 1.1687,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 1.2223820686340332,
|
216 |
+
"eval_runtime": 43.9319,
|
217 |
+
"eval_samples_per_second": 22.763,
|
218 |
+
"eval_steps_per_second": 2.845,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.2342524528503418,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 1.1516,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 1.2233225107192993,
|
231 |
+
"eval_runtime": 43.9266,
|
232 |
+
"eval_samples_per_second": 22.765,
|
233 |
+
"eval_steps_per_second": 2.846,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 0.26675984263420105,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 1.1673,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 1.2325456142425537,
|
246 |
+
"eval_runtime": 43.9006,
|
247 |
+
"eval_samples_per_second": 22.779,
|
248 |
+
"eval_steps_per_second": 2.847,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 0.36160191893577576,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 1.1959,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 1.2345908880233765,
|
261 |
+
"eval_runtime": 44.0473,
|
262 |
+
"eval_samples_per_second": 22.703,
|
263 |
+
"eval_steps_per_second": 2.838,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 0.35918164253234863,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 1.1213,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 1.2354995012283325,
|
276 |
+
"eval_runtime": 43.984,
|
277 |
+
"eval_samples_per_second": 22.736,
|
278 |
+
"eval_steps_per_second": 2.842,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 0.4165070652961731,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 1.1228,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 1.2382323741912842,
|
291 |
+
"eval_runtime": 44.1465,
|
292 |
+
"eval_samples_per_second": 22.652,
|
293 |
+
"eval_steps_per_second": 2.831,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 0.3703323304653168,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 1.1306,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 1.2381049394607544,
|
306 |
+
"eval_runtime": 44.0824,
|
307 |
+
"eval_samples_per_second": 22.685,
|
308 |
+
"eval_steps_per_second": 2.836,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 0.49251970648765564,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 1.1196,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 1.2419582605361938,
|
321 |
+
"eval_runtime": 44.1478,
|
322 |
+
"eval_samples_per_second": 22.651,
|
323 |
+
"eval_steps_per_second": 2.831,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 0.5216273069381714,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 1.1375,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 1.2372699975967407,
|
336 |
+
"eval_runtime": 44.195,
|
337 |
+
"eval_samples_per_second": 22.627,
|
338 |
+
"eval_steps_per_second": 2.828,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 0.4238261580467224,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 1.1573,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 1.2556878328323364,
|
351 |
+
"eval_runtime": 44.2342,
|
352 |
+
"eval_samples_per_second": 22.607,
|
353 |
+
"eval_steps_per_second": 2.826,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 0.72156822681427,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 1.0865,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 1.2621344327926636,
|
366 |
+
"eval_runtime": 44.2027,
|
367 |
+
"eval_samples_per_second": 22.623,
|
368 |
+
"eval_steps_per_second": 2.828,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 0.5642262101173401,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 1.0993,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 1.2770243883132935,
|
381 |
+
"eval_runtime": 44.0511,
|
382 |
+
"eval_samples_per_second": 22.701,
|
383 |
+
"eval_steps_per_second": 2.838,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 0.7814852595329285,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 1.0989,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 1.2699764966964722,
|
396 |
+
"eval_runtime": 44.1962,
|
397 |
+
"eval_samples_per_second": 22.626,
|
398 |
+
"eval_steps_per_second": 2.828,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 0.698136031627655,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 1.1381,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 1.2810109853744507,
|
411 |
+
"eval_runtime": 44.084,
|
412 |
+
"eval_samples_per_second": 22.684,
|
413 |
+
"eval_steps_per_second": 2.835,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 0.6332135796546936,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 1.0574,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 1.2708227634429932,
|
426 |
+
"eval_runtime": 43.9939,
|
427 |
+
"eval_samples_per_second": 22.73,
|
428 |
+
"eval_steps_per_second": 2.841,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 0.9241636991500854,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 1.0944,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 1.2758972644805908,
|
441 |
+
"eval_runtime": 43.9816,
|
442 |
+
"eval_samples_per_second": 22.737,
|
443 |
+
"eval_steps_per_second": 2.842,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 0.639854371547699,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 1.0468,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 1.271722674369812,
|
456 |
+
"eval_runtime": 44.0382,
|
457 |
+
"eval_samples_per_second": 22.708,
|
458 |
+
"eval_steps_per_second": 2.838,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 1.184584140777588,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.036,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 1.3531861305236816,
|
471 |
+
"eval_runtime": 44.1195,
|
472 |
+
"eval_samples_per_second": 22.666,
|
473 |
+
"eval_steps_per_second": 2.833,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 0.9589372873306274,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.0382,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 1.3156057596206665,
|
486 |
+
"eval_runtime": 43.996,
|
487 |
+
"eval_samples_per_second": 22.729,
|
488 |
+
"eval_steps_per_second": 2.841,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 1.099959135055542,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.0621,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 1.3207496404647827,
|
501 |
+
"eval_runtime": 44.0529,
|
502 |
+
"eval_samples_per_second": 22.7,
|
503 |
+
"eval_steps_per_second": 2.837,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 1.2086342573165894,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.0585,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 1.3306328058242798,
|
516 |
+
"eval_runtime": 43.8749,
|
517 |
+
"eval_samples_per_second": 22.792,
|
518 |
+
"eval_steps_per_second": 2.849,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 0.9267418384552002,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.0599,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 1.324584722518921,
|
531 |
+
"eval_runtime": 43.853,
|
532 |
+
"eval_samples_per_second": 22.803,
|
533 |
+
"eval_steps_per_second": 2.85,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 1.116028070449829,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.0048,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 1.3211394548416138,
|
546 |
+
"eval_runtime": 44.1843,
|
547 |
+
"eval_samples_per_second": 22.632,
|
548 |
+
"eval_steps_per_second": 2.829,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 1.0464606285095215,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.0147,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 1.3230206966400146,
|
561 |
+
"eval_runtime": 44.0559,
|
562 |
+
"eval_samples_per_second": 22.698,
|
563 |
+
"eval_steps_per_second": 2.837,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 1.1091907024383545,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.0073,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 1.3765190839767456,
|
576 |
+
"eval_runtime": 44.0219,
|
577 |
+
"eval_samples_per_second": 22.716,
|
578 |
+
"eval_steps_per_second": 2.839,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 1.3128504753112793,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.0126,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 1.3743306398391724,
|
591 |
+
"eval_runtime": 43.9063,
|
592 |
+
"eval_samples_per_second": 22.776,
|
593 |
+
"eval_steps_per_second": 2.847,
|
594 |
+
"step": 390
|
595 |
+
}
|
596 |
+
],
|
597 |
+
"logging_steps": 10,
|
598 |
+
"max_steps": 675,
|
599 |
+
"num_input_tokens_seen": 0,
|
600 |
+
"num_train_epochs": 9,
|
601 |
+
"save_steps": 10,
|
602 |
+
"stateful_callbacks": {
|
603 |
+
"TrainerControl": {
|
604 |
+
"args": {
|
605 |
+
"should_epoch_stop": false,
|
606 |
+
"should_evaluate": false,
|
607 |
+
"should_log": false,
|
608 |
+
"should_save": true,
|
609 |
+
"should_training_stop": false
|
610 |
+
},
|
611 |
+
"attributes": {}
|
612 |
+
}
|
613 |
+
},
|
614 |
+
"total_flos": 6.39056807460864e+16,
|
615 |
+
"train_batch_size": 8,
|
616 |
+
"trial_name": null,
|
617 |
+
"trial_params": null
|
618 |
+
}
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-400/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_math_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-math-8e-05/checkpoint-400/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value",
|
24 |
+
"dense_4h_to_h",
|
25 |
+
"dense_h_to_4h",
|
26 |
+
"dense"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|