Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-410/trainer_state.json +648 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-420/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-420/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-420/trainer_state.json +663 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-430/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-430/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-430/trainer_state.json +678 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-440/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-440/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-440/trainer_state.json +693 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-450/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-450/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-450/trainer_state.json +708 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-460/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-460/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-460/trainer_state.json +723 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-470/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-470/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-470/trainer_state.json +738 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-480/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-480/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-480/trainer_state.json +753 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-490/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-490/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-490/trainer_state.json +768 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-500/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-500/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-500/trainer_state.json +783 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-510/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-510/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-510/trainer_state.json +798 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-520/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-520/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-520/trainer_state.json +813 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-530/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-530/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-530/trainer_state.json +828 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-540/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-540/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-540/trainer_state.json +843 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-550/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-550/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-550/trainer_state.json +858 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-560/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-560/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-560/trainer_state.json +873 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-570/README.md +202 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-570/adapter_config.json +31 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-570/trainer_state.json +888 -0
- output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-580/README.md +202 -0
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-410/trainer_state.json
ADDED
@@ -0,0 +1,648 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 5.466666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 410,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
}
|
626 |
+
],
|
627 |
+
"logging_steps": 10,
|
628 |
+
"max_steps": 675,
|
629 |
+
"num_input_tokens_seen": 0,
|
630 |
+
"num_train_epochs": 9,
|
631 |
+
"save_steps": 10,
|
632 |
+
"stateful_callbacks": {
|
633 |
+
"TrainerControl": {
|
634 |
+
"args": {
|
635 |
+
"should_epoch_stop": false,
|
636 |
+
"should_evaluate": false,
|
637 |
+
"should_log": false,
|
638 |
+
"should_save": true,
|
639 |
+
"should_training_stop": false
|
640 |
+
},
|
641 |
+
"attributes": {}
|
642 |
+
}
|
643 |
+
},
|
644 |
+
"total_flos": 6.71828951433216e+16,
|
645 |
+
"train_batch_size": 8,
|
646 |
+
"trial_name": null,
|
647 |
+
"trial_params": null
|
648 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-420/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-420/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-420/trainer_state.json
ADDED
@@ -0,0 +1,663 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 5.6,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 420,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
}
|
641 |
+
],
|
642 |
+
"logging_steps": 10,
|
643 |
+
"max_steps": 675,
|
644 |
+
"num_input_tokens_seen": 0,
|
645 |
+
"num_train_epochs": 9,
|
646 |
+
"save_steps": 10,
|
647 |
+
"stateful_callbacks": {
|
648 |
+
"TrainerControl": {
|
649 |
+
"args": {
|
650 |
+
"should_epoch_stop": false,
|
651 |
+
"should_evaluate": false,
|
652 |
+
"should_log": false,
|
653 |
+
"should_save": true,
|
654 |
+
"should_training_stop": false
|
655 |
+
},
|
656 |
+
"attributes": {}
|
657 |
+
}
|
658 |
+
},
|
659 |
+
"total_flos": 6.88215023419392e+16,
|
660 |
+
"train_batch_size": 8,
|
661 |
+
"trial_name": null,
|
662 |
+
"trial_params": null
|
663 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-430/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-430/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-430/trainer_state.json
ADDED
@@ -0,0 +1,678 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 5.733333333333333,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 430,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 3.286614179611206,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.8312,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.813601493835449,
|
651 |
+
"eval_runtime": 43.9055,
|
652 |
+
"eval_samples_per_second": 22.776,
|
653 |
+
"eval_steps_per_second": 2.847,
|
654 |
+
"step": 430
|
655 |
+
}
|
656 |
+
],
|
657 |
+
"logging_steps": 10,
|
658 |
+
"max_steps": 675,
|
659 |
+
"num_input_tokens_seen": 0,
|
660 |
+
"num_train_epochs": 9,
|
661 |
+
"save_steps": 10,
|
662 |
+
"stateful_callbacks": {
|
663 |
+
"TrainerControl": {
|
664 |
+
"args": {
|
665 |
+
"should_epoch_stop": false,
|
666 |
+
"should_evaluate": false,
|
667 |
+
"should_log": false,
|
668 |
+
"should_save": true,
|
669 |
+
"should_training_stop": false
|
670 |
+
},
|
671 |
+
"attributes": {}
|
672 |
+
}
|
673 |
+
},
|
674 |
+
"total_flos": 7.04601095405568e+16,
|
675 |
+
"train_batch_size": 8,
|
676 |
+
"trial_name": null,
|
677 |
+
"trial_params": null
|
678 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-440/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-440/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-440/trainer_state.json
ADDED
@@ -0,0 +1,693 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 5.866666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 440,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 3.286614179611206,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.8312,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.813601493835449,
|
651 |
+
"eval_runtime": 43.9055,
|
652 |
+
"eval_samples_per_second": 22.776,
|
653 |
+
"eval_steps_per_second": 2.847,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 3.152069568634033,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.7372,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 2.8068931102752686,
|
666 |
+
"eval_runtime": 43.9514,
|
667 |
+
"eval_samples_per_second": 22.752,
|
668 |
+
"eval_steps_per_second": 2.844,
|
669 |
+
"step": 440
|
670 |
+
}
|
671 |
+
],
|
672 |
+
"logging_steps": 10,
|
673 |
+
"max_steps": 675,
|
674 |
+
"num_input_tokens_seen": 0,
|
675 |
+
"num_train_epochs": 9,
|
676 |
+
"save_steps": 10,
|
677 |
+
"stateful_callbacks": {
|
678 |
+
"TrainerControl": {
|
679 |
+
"args": {
|
680 |
+
"should_epoch_stop": false,
|
681 |
+
"should_evaluate": false,
|
682 |
+
"should_log": false,
|
683 |
+
"should_save": true,
|
684 |
+
"should_training_stop": false
|
685 |
+
},
|
686 |
+
"attributes": {}
|
687 |
+
}
|
688 |
+
},
|
689 |
+
"total_flos": 7.20987167391744e+16,
|
690 |
+
"train_batch_size": 8,
|
691 |
+
"trial_name": null,
|
692 |
+
"trial_params": null
|
693 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-450/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-450/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-450/trainer_state.json
ADDED
@@ -0,0 +1,708 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 6.0,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 450,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 3.286614179611206,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.8312,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.813601493835449,
|
651 |
+
"eval_runtime": 43.9055,
|
652 |
+
"eval_samples_per_second": 22.776,
|
653 |
+
"eval_steps_per_second": 2.847,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 3.152069568634033,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.7372,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 2.8068931102752686,
|
666 |
+
"eval_runtime": 43.9514,
|
667 |
+
"eval_samples_per_second": 22.752,
|
668 |
+
"eval_steps_per_second": 2.844,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 3.1378376483917236,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.7966,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 2.8000402450561523,
|
681 |
+
"eval_runtime": 43.9182,
|
682 |
+
"eval_samples_per_second": 22.77,
|
683 |
+
"eval_steps_per_second": 2.846,
|
684 |
+
"step": 450
|
685 |
+
}
|
686 |
+
],
|
687 |
+
"logging_steps": 10,
|
688 |
+
"max_steps": 675,
|
689 |
+
"num_input_tokens_seen": 0,
|
690 |
+
"num_train_epochs": 9,
|
691 |
+
"save_steps": 10,
|
692 |
+
"stateful_callbacks": {
|
693 |
+
"TrainerControl": {
|
694 |
+
"args": {
|
695 |
+
"should_epoch_stop": false,
|
696 |
+
"should_evaluate": false,
|
697 |
+
"should_log": false,
|
698 |
+
"should_save": true,
|
699 |
+
"should_training_stop": false
|
700 |
+
},
|
701 |
+
"attributes": {}
|
702 |
+
}
|
703 |
+
},
|
704 |
+
"total_flos": 7.3737323937792e+16,
|
705 |
+
"train_batch_size": 8,
|
706 |
+
"trial_name": null,
|
707 |
+
"trial_params": null
|
708 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-460/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-460/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-460/trainer_state.json
ADDED
@@ -0,0 +1,723 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 6.133333333333334,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 460,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 3.286614179611206,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.8312,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.813601493835449,
|
651 |
+
"eval_runtime": 43.9055,
|
652 |
+
"eval_samples_per_second": 22.776,
|
653 |
+
"eval_steps_per_second": 2.847,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 3.152069568634033,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.7372,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 2.8068931102752686,
|
666 |
+
"eval_runtime": 43.9514,
|
667 |
+
"eval_samples_per_second": 22.752,
|
668 |
+
"eval_steps_per_second": 2.844,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 3.1378376483917236,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.7966,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 2.8000402450561523,
|
681 |
+
"eval_runtime": 43.9182,
|
682 |
+
"eval_samples_per_second": 22.77,
|
683 |
+
"eval_steps_per_second": 2.846,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.289393424987793,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 1.7021,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 2.8974051475524902,
|
696 |
+
"eval_runtime": 43.8673,
|
697 |
+
"eval_samples_per_second": 22.796,
|
698 |
+
"eval_steps_per_second": 2.85,
|
699 |
+
"step": 460
|
700 |
+
}
|
701 |
+
],
|
702 |
+
"logging_steps": 10,
|
703 |
+
"max_steps": 675,
|
704 |
+
"num_input_tokens_seen": 0,
|
705 |
+
"num_train_epochs": 9,
|
706 |
+
"save_steps": 10,
|
707 |
+
"stateful_callbacks": {
|
708 |
+
"TrainerControl": {
|
709 |
+
"args": {
|
710 |
+
"should_epoch_stop": false,
|
711 |
+
"should_evaluate": false,
|
712 |
+
"should_log": false,
|
713 |
+
"should_save": true,
|
714 |
+
"should_training_stop": false
|
715 |
+
},
|
716 |
+
"attributes": {}
|
717 |
+
}
|
718 |
+
},
|
719 |
+
"total_flos": 7.53759311364096e+16,
|
720 |
+
"train_batch_size": 8,
|
721 |
+
"trial_name": null,
|
722 |
+
"trial_params": null
|
723 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-470/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-470/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-470/trainer_state.json
ADDED
@@ -0,0 +1,738 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 6.266666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 470,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 3.286614179611206,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.8312,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.813601493835449,
|
651 |
+
"eval_runtime": 43.9055,
|
652 |
+
"eval_samples_per_second": 22.776,
|
653 |
+
"eval_steps_per_second": 2.847,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 3.152069568634033,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.7372,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 2.8068931102752686,
|
666 |
+
"eval_runtime": 43.9514,
|
667 |
+
"eval_samples_per_second": 22.752,
|
668 |
+
"eval_steps_per_second": 2.844,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 3.1378376483917236,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.7966,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 2.8000402450561523,
|
681 |
+
"eval_runtime": 43.9182,
|
682 |
+
"eval_samples_per_second": 22.77,
|
683 |
+
"eval_steps_per_second": 2.846,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.289393424987793,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 1.7021,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 2.8974051475524902,
|
696 |
+
"eval_runtime": 43.8673,
|
697 |
+
"eval_samples_per_second": 22.796,
|
698 |
+
"eval_steps_per_second": 2.85,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 3.662322998046875,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 1.6801,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 2.891542911529541,
|
711 |
+
"eval_runtime": 43.9675,
|
712 |
+
"eval_samples_per_second": 22.744,
|
713 |
+
"eval_steps_per_second": 2.843,
|
714 |
+
"step": 470
|
715 |
+
}
|
716 |
+
],
|
717 |
+
"logging_steps": 10,
|
718 |
+
"max_steps": 675,
|
719 |
+
"num_input_tokens_seen": 0,
|
720 |
+
"num_train_epochs": 9,
|
721 |
+
"save_steps": 10,
|
722 |
+
"stateful_callbacks": {
|
723 |
+
"TrainerControl": {
|
724 |
+
"args": {
|
725 |
+
"should_epoch_stop": false,
|
726 |
+
"should_evaluate": false,
|
727 |
+
"should_log": false,
|
728 |
+
"should_save": true,
|
729 |
+
"should_training_stop": false
|
730 |
+
},
|
731 |
+
"attributes": {}
|
732 |
+
}
|
733 |
+
},
|
734 |
+
"total_flos": 7.70145383350272e+16,
|
735 |
+
"train_batch_size": 8,
|
736 |
+
"trial_name": null,
|
737 |
+
"trial_params": null
|
738 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-480/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-480/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-480/trainer_state.json
ADDED
@@ -0,0 +1,753 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 6.4,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 480,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 3.286614179611206,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.8312,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.813601493835449,
|
651 |
+
"eval_runtime": 43.9055,
|
652 |
+
"eval_samples_per_second": 22.776,
|
653 |
+
"eval_steps_per_second": 2.847,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 3.152069568634033,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.7372,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 2.8068931102752686,
|
666 |
+
"eval_runtime": 43.9514,
|
667 |
+
"eval_samples_per_second": 22.752,
|
668 |
+
"eval_steps_per_second": 2.844,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 3.1378376483917236,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.7966,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 2.8000402450561523,
|
681 |
+
"eval_runtime": 43.9182,
|
682 |
+
"eval_samples_per_second": 22.77,
|
683 |
+
"eval_steps_per_second": 2.846,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.289393424987793,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 1.7021,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 2.8974051475524902,
|
696 |
+
"eval_runtime": 43.8673,
|
697 |
+
"eval_samples_per_second": 22.796,
|
698 |
+
"eval_steps_per_second": 2.85,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 3.662322998046875,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 1.6801,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 2.891542911529541,
|
711 |
+
"eval_runtime": 43.9675,
|
712 |
+
"eval_samples_per_second": 22.744,
|
713 |
+
"eval_steps_per_second": 2.843,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 3.6940433979034424,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 1.6549,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 2.884908676147461,
|
726 |
+
"eval_runtime": 43.9337,
|
727 |
+
"eval_samples_per_second": 22.762,
|
728 |
+
"eval_steps_per_second": 2.845,
|
729 |
+
"step": 480
|
730 |
+
}
|
731 |
+
],
|
732 |
+
"logging_steps": 10,
|
733 |
+
"max_steps": 675,
|
734 |
+
"num_input_tokens_seen": 0,
|
735 |
+
"num_train_epochs": 9,
|
736 |
+
"save_steps": 10,
|
737 |
+
"stateful_callbacks": {
|
738 |
+
"TrainerControl": {
|
739 |
+
"args": {
|
740 |
+
"should_epoch_stop": false,
|
741 |
+
"should_evaluate": false,
|
742 |
+
"should_log": false,
|
743 |
+
"should_save": true,
|
744 |
+
"should_training_stop": false
|
745 |
+
},
|
746 |
+
"attributes": {}
|
747 |
+
}
|
748 |
+
},
|
749 |
+
"total_flos": 7.86531455336448e+16,
|
750 |
+
"train_batch_size": 8,
|
751 |
+
"trial_name": null,
|
752 |
+
"trial_params": null
|
753 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-490/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-490/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-490/trainer_state.json
ADDED
@@ -0,0 +1,768 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 6.533333333333333,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 490,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 3.286614179611206,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.8312,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.813601493835449,
|
651 |
+
"eval_runtime": 43.9055,
|
652 |
+
"eval_samples_per_second": 22.776,
|
653 |
+
"eval_steps_per_second": 2.847,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 3.152069568634033,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.7372,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 2.8068931102752686,
|
666 |
+
"eval_runtime": 43.9514,
|
667 |
+
"eval_samples_per_second": 22.752,
|
668 |
+
"eval_steps_per_second": 2.844,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 3.1378376483917236,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.7966,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 2.8000402450561523,
|
681 |
+
"eval_runtime": 43.9182,
|
682 |
+
"eval_samples_per_second": 22.77,
|
683 |
+
"eval_steps_per_second": 2.846,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.289393424987793,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 1.7021,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 2.8974051475524902,
|
696 |
+
"eval_runtime": 43.8673,
|
697 |
+
"eval_samples_per_second": 22.796,
|
698 |
+
"eval_steps_per_second": 2.85,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 3.662322998046875,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 1.6801,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 2.891542911529541,
|
711 |
+
"eval_runtime": 43.9675,
|
712 |
+
"eval_samples_per_second": 22.744,
|
713 |
+
"eval_steps_per_second": 2.843,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 3.6940433979034424,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 1.6549,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 2.884908676147461,
|
726 |
+
"eval_runtime": 43.9337,
|
727 |
+
"eval_samples_per_second": 22.762,
|
728 |
+
"eval_steps_per_second": 2.845,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 3.8792476654052734,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 1.6964,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 2.8918919563293457,
|
741 |
+
"eval_runtime": 43.9143,
|
742 |
+
"eval_samples_per_second": 22.772,
|
743 |
+
"eval_steps_per_second": 2.846,
|
744 |
+
"step": 490
|
745 |
+
}
|
746 |
+
],
|
747 |
+
"logging_steps": 10,
|
748 |
+
"max_steps": 675,
|
749 |
+
"num_input_tokens_seen": 0,
|
750 |
+
"num_train_epochs": 9,
|
751 |
+
"save_steps": 10,
|
752 |
+
"stateful_callbacks": {
|
753 |
+
"TrainerControl": {
|
754 |
+
"args": {
|
755 |
+
"should_epoch_stop": false,
|
756 |
+
"should_evaluate": false,
|
757 |
+
"should_log": false,
|
758 |
+
"should_save": true,
|
759 |
+
"should_training_stop": false
|
760 |
+
},
|
761 |
+
"attributes": {}
|
762 |
+
}
|
763 |
+
},
|
764 |
+
"total_flos": 8.02917527322624e+16,
|
765 |
+
"train_batch_size": 8,
|
766 |
+
"trial_name": null,
|
767 |
+
"trial_params": null
|
768 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-500/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-500/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-500/trainer_state.json
ADDED
@@ -0,0 +1,783 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 6.666666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 500,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 3.286614179611206,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.8312,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.813601493835449,
|
651 |
+
"eval_runtime": 43.9055,
|
652 |
+
"eval_samples_per_second": 22.776,
|
653 |
+
"eval_steps_per_second": 2.847,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 3.152069568634033,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.7372,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 2.8068931102752686,
|
666 |
+
"eval_runtime": 43.9514,
|
667 |
+
"eval_samples_per_second": 22.752,
|
668 |
+
"eval_steps_per_second": 2.844,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 3.1378376483917236,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.7966,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 2.8000402450561523,
|
681 |
+
"eval_runtime": 43.9182,
|
682 |
+
"eval_samples_per_second": 22.77,
|
683 |
+
"eval_steps_per_second": 2.846,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.289393424987793,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 1.7021,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 2.8974051475524902,
|
696 |
+
"eval_runtime": 43.8673,
|
697 |
+
"eval_samples_per_second": 22.796,
|
698 |
+
"eval_steps_per_second": 2.85,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 3.662322998046875,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 1.6801,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 2.891542911529541,
|
711 |
+
"eval_runtime": 43.9675,
|
712 |
+
"eval_samples_per_second": 22.744,
|
713 |
+
"eval_steps_per_second": 2.843,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 3.6940433979034424,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 1.6549,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 2.884908676147461,
|
726 |
+
"eval_runtime": 43.9337,
|
727 |
+
"eval_samples_per_second": 22.762,
|
728 |
+
"eval_steps_per_second": 2.845,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 3.8792476654052734,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 1.6964,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 2.8918919563293457,
|
741 |
+
"eval_runtime": 43.9143,
|
742 |
+
"eval_samples_per_second": 22.772,
|
743 |
+
"eval_steps_per_second": 2.846,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 3.8439388275146484,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 1.7524,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 2.890720844268799,
|
756 |
+
"eval_runtime": 43.9225,
|
757 |
+
"eval_samples_per_second": 22.767,
|
758 |
+
"eval_steps_per_second": 2.846,
|
759 |
+
"step": 500
|
760 |
+
}
|
761 |
+
],
|
762 |
+
"logging_steps": 10,
|
763 |
+
"max_steps": 675,
|
764 |
+
"num_input_tokens_seen": 0,
|
765 |
+
"num_train_epochs": 9,
|
766 |
+
"save_steps": 10,
|
767 |
+
"stateful_callbacks": {
|
768 |
+
"TrainerControl": {
|
769 |
+
"args": {
|
770 |
+
"should_epoch_stop": false,
|
771 |
+
"should_evaluate": false,
|
772 |
+
"should_log": false,
|
773 |
+
"should_save": true,
|
774 |
+
"should_training_stop": false
|
775 |
+
},
|
776 |
+
"attributes": {}
|
777 |
+
}
|
778 |
+
},
|
779 |
+
"total_flos": 8.193035993088e+16,
|
780 |
+
"train_batch_size": 8,
|
781 |
+
"trial_name": null,
|
782 |
+
"trial_params": null
|
783 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-510/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-510/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-510/trainer_state.json
ADDED
@@ -0,0 +1,798 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 6.8,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 510,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 3.286614179611206,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.8312,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.813601493835449,
|
651 |
+
"eval_runtime": 43.9055,
|
652 |
+
"eval_samples_per_second": 22.776,
|
653 |
+
"eval_steps_per_second": 2.847,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 3.152069568634033,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.7372,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 2.8068931102752686,
|
666 |
+
"eval_runtime": 43.9514,
|
667 |
+
"eval_samples_per_second": 22.752,
|
668 |
+
"eval_steps_per_second": 2.844,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 3.1378376483917236,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.7966,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 2.8000402450561523,
|
681 |
+
"eval_runtime": 43.9182,
|
682 |
+
"eval_samples_per_second": 22.77,
|
683 |
+
"eval_steps_per_second": 2.846,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.289393424987793,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 1.7021,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 2.8974051475524902,
|
696 |
+
"eval_runtime": 43.8673,
|
697 |
+
"eval_samples_per_second": 22.796,
|
698 |
+
"eval_steps_per_second": 2.85,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 3.662322998046875,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 1.6801,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 2.891542911529541,
|
711 |
+
"eval_runtime": 43.9675,
|
712 |
+
"eval_samples_per_second": 22.744,
|
713 |
+
"eval_steps_per_second": 2.843,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 3.6940433979034424,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 1.6549,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 2.884908676147461,
|
726 |
+
"eval_runtime": 43.9337,
|
727 |
+
"eval_samples_per_second": 22.762,
|
728 |
+
"eval_steps_per_second": 2.845,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 3.8792476654052734,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 1.6964,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 2.8918919563293457,
|
741 |
+
"eval_runtime": 43.9143,
|
742 |
+
"eval_samples_per_second": 22.772,
|
743 |
+
"eval_steps_per_second": 2.846,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 3.8439388275146484,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 1.7524,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 2.890720844268799,
|
756 |
+
"eval_runtime": 43.9225,
|
757 |
+
"eval_samples_per_second": 22.767,
|
758 |
+
"eval_steps_per_second": 2.846,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 3.7934892177581787,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 1.7211,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 2.8894593715667725,
|
771 |
+
"eval_runtime": 43.9778,
|
772 |
+
"eval_samples_per_second": 22.739,
|
773 |
+
"eval_steps_per_second": 2.842,
|
774 |
+
"step": 510
|
775 |
+
}
|
776 |
+
],
|
777 |
+
"logging_steps": 10,
|
778 |
+
"max_steps": 675,
|
779 |
+
"num_input_tokens_seen": 0,
|
780 |
+
"num_train_epochs": 9,
|
781 |
+
"save_steps": 10,
|
782 |
+
"stateful_callbacks": {
|
783 |
+
"TrainerControl": {
|
784 |
+
"args": {
|
785 |
+
"should_epoch_stop": false,
|
786 |
+
"should_evaluate": false,
|
787 |
+
"should_log": false,
|
788 |
+
"should_save": true,
|
789 |
+
"should_training_stop": false
|
790 |
+
},
|
791 |
+
"attributes": {}
|
792 |
+
}
|
793 |
+
},
|
794 |
+
"total_flos": 8.35689671294976e+16,
|
795 |
+
"train_batch_size": 8,
|
796 |
+
"trial_name": null,
|
797 |
+
"trial_params": null
|
798 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-520/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-520/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-520/trainer_state.json
ADDED
@@ -0,0 +1,813 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 6.933333333333334,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 520,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 3.286614179611206,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.8312,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.813601493835449,
|
651 |
+
"eval_runtime": 43.9055,
|
652 |
+
"eval_samples_per_second": 22.776,
|
653 |
+
"eval_steps_per_second": 2.847,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 3.152069568634033,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.7372,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 2.8068931102752686,
|
666 |
+
"eval_runtime": 43.9514,
|
667 |
+
"eval_samples_per_second": 22.752,
|
668 |
+
"eval_steps_per_second": 2.844,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 3.1378376483917236,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.7966,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 2.8000402450561523,
|
681 |
+
"eval_runtime": 43.9182,
|
682 |
+
"eval_samples_per_second": 22.77,
|
683 |
+
"eval_steps_per_second": 2.846,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.289393424987793,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 1.7021,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 2.8974051475524902,
|
696 |
+
"eval_runtime": 43.8673,
|
697 |
+
"eval_samples_per_second": 22.796,
|
698 |
+
"eval_steps_per_second": 2.85,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 3.662322998046875,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 1.6801,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 2.891542911529541,
|
711 |
+
"eval_runtime": 43.9675,
|
712 |
+
"eval_samples_per_second": 22.744,
|
713 |
+
"eval_steps_per_second": 2.843,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 3.6940433979034424,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 1.6549,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 2.884908676147461,
|
726 |
+
"eval_runtime": 43.9337,
|
727 |
+
"eval_samples_per_second": 22.762,
|
728 |
+
"eval_steps_per_second": 2.845,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 3.8792476654052734,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 1.6964,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 2.8918919563293457,
|
741 |
+
"eval_runtime": 43.9143,
|
742 |
+
"eval_samples_per_second": 22.772,
|
743 |
+
"eval_steps_per_second": 2.846,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 3.8439388275146484,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 1.7524,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 2.890720844268799,
|
756 |
+
"eval_runtime": 43.9225,
|
757 |
+
"eval_samples_per_second": 22.767,
|
758 |
+
"eval_steps_per_second": 2.846,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 3.7934892177581787,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 1.7211,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 2.8894593715667725,
|
771 |
+
"eval_runtime": 43.9778,
|
772 |
+
"eval_samples_per_second": 22.739,
|
773 |
+
"eval_steps_per_second": 2.842,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 3.739837884902954,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 1.6917,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 2.8792428970336914,
|
786 |
+
"eval_runtime": 43.9841,
|
787 |
+
"eval_samples_per_second": 22.735,
|
788 |
+
"eval_steps_per_second": 2.842,
|
789 |
+
"step": 520
|
790 |
+
}
|
791 |
+
],
|
792 |
+
"logging_steps": 10,
|
793 |
+
"max_steps": 675,
|
794 |
+
"num_input_tokens_seen": 0,
|
795 |
+
"num_train_epochs": 9,
|
796 |
+
"save_steps": 10,
|
797 |
+
"stateful_callbacks": {
|
798 |
+
"TrainerControl": {
|
799 |
+
"args": {
|
800 |
+
"should_epoch_stop": false,
|
801 |
+
"should_evaluate": false,
|
802 |
+
"should_log": false,
|
803 |
+
"should_save": true,
|
804 |
+
"should_training_stop": false
|
805 |
+
},
|
806 |
+
"attributes": {}
|
807 |
+
}
|
808 |
+
},
|
809 |
+
"total_flos": 8.52075743281152e+16,
|
810 |
+
"train_batch_size": 8,
|
811 |
+
"trial_name": null,
|
812 |
+
"trial_params": null
|
813 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-530/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-530/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-530/trainer_state.json
ADDED
@@ -0,0 +1,828 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 7.066666666666666,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 530,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 3.286614179611206,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.8312,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.813601493835449,
|
651 |
+
"eval_runtime": 43.9055,
|
652 |
+
"eval_samples_per_second": 22.776,
|
653 |
+
"eval_steps_per_second": 2.847,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 3.152069568634033,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.7372,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 2.8068931102752686,
|
666 |
+
"eval_runtime": 43.9514,
|
667 |
+
"eval_samples_per_second": 22.752,
|
668 |
+
"eval_steps_per_second": 2.844,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 3.1378376483917236,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.7966,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 2.8000402450561523,
|
681 |
+
"eval_runtime": 43.9182,
|
682 |
+
"eval_samples_per_second": 22.77,
|
683 |
+
"eval_steps_per_second": 2.846,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.289393424987793,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 1.7021,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 2.8974051475524902,
|
696 |
+
"eval_runtime": 43.8673,
|
697 |
+
"eval_samples_per_second": 22.796,
|
698 |
+
"eval_steps_per_second": 2.85,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 3.662322998046875,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 1.6801,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 2.891542911529541,
|
711 |
+
"eval_runtime": 43.9675,
|
712 |
+
"eval_samples_per_second": 22.744,
|
713 |
+
"eval_steps_per_second": 2.843,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 3.6940433979034424,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 1.6549,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 2.884908676147461,
|
726 |
+
"eval_runtime": 43.9337,
|
727 |
+
"eval_samples_per_second": 22.762,
|
728 |
+
"eval_steps_per_second": 2.845,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 3.8792476654052734,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 1.6964,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 2.8918919563293457,
|
741 |
+
"eval_runtime": 43.9143,
|
742 |
+
"eval_samples_per_second": 22.772,
|
743 |
+
"eval_steps_per_second": 2.846,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 3.8439388275146484,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 1.7524,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 2.890720844268799,
|
756 |
+
"eval_runtime": 43.9225,
|
757 |
+
"eval_samples_per_second": 22.767,
|
758 |
+
"eval_steps_per_second": 2.846,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 3.7934892177581787,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 1.7211,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 2.8894593715667725,
|
771 |
+
"eval_runtime": 43.9778,
|
772 |
+
"eval_samples_per_second": 22.739,
|
773 |
+
"eval_steps_per_second": 2.842,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 3.739837884902954,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 1.6917,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 2.8792428970336914,
|
786 |
+
"eval_runtime": 43.9841,
|
787 |
+
"eval_samples_per_second": 22.735,
|
788 |
+
"eval_steps_per_second": 2.842,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 3.616173267364502,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 1.7032,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 2.9059717655181885,
|
801 |
+
"eval_runtime": 43.9541,
|
802 |
+
"eval_samples_per_second": 22.751,
|
803 |
+
"eval_steps_per_second": 2.844,
|
804 |
+
"step": 530
|
805 |
+
}
|
806 |
+
],
|
807 |
+
"logging_steps": 10,
|
808 |
+
"max_steps": 675,
|
809 |
+
"num_input_tokens_seen": 0,
|
810 |
+
"num_train_epochs": 9,
|
811 |
+
"save_steps": 10,
|
812 |
+
"stateful_callbacks": {
|
813 |
+
"TrainerControl": {
|
814 |
+
"args": {
|
815 |
+
"should_epoch_stop": false,
|
816 |
+
"should_evaluate": false,
|
817 |
+
"should_log": false,
|
818 |
+
"should_save": true,
|
819 |
+
"should_training_stop": false
|
820 |
+
},
|
821 |
+
"attributes": {}
|
822 |
+
}
|
823 |
+
},
|
824 |
+
"total_flos": 8.68461815267328e+16,
|
825 |
+
"train_batch_size": 8,
|
826 |
+
"trial_name": null,
|
827 |
+
"trial_params": null
|
828 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-540/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-540/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-540/trainer_state.json
ADDED
@@ -0,0 +1,843 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 7.2,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 540,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 3.286614179611206,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.8312,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.813601493835449,
|
651 |
+
"eval_runtime": 43.9055,
|
652 |
+
"eval_samples_per_second": 22.776,
|
653 |
+
"eval_steps_per_second": 2.847,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 3.152069568634033,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.7372,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 2.8068931102752686,
|
666 |
+
"eval_runtime": 43.9514,
|
667 |
+
"eval_samples_per_second": 22.752,
|
668 |
+
"eval_steps_per_second": 2.844,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 3.1378376483917236,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.7966,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 2.8000402450561523,
|
681 |
+
"eval_runtime": 43.9182,
|
682 |
+
"eval_samples_per_second": 22.77,
|
683 |
+
"eval_steps_per_second": 2.846,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.289393424987793,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 1.7021,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 2.8974051475524902,
|
696 |
+
"eval_runtime": 43.8673,
|
697 |
+
"eval_samples_per_second": 22.796,
|
698 |
+
"eval_steps_per_second": 2.85,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 3.662322998046875,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 1.6801,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 2.891542911529541,
|
711 |
+
"eval_runtime": 43.9675,
|
712 |
+
"eval_samples_per_second": 22.744,
|
713 |
+
"eval_steps_per_second": 2.843,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 3.6940433979034424,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 1.6549,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 2.884908676147461,
|
726 |
+
"eval_runtime": 43.9337,
|
727 |
+
"eval_samples_per_second": 22.762,
|
728 |
+
"eval_steps_per_second": 2.845,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 3.8792476654052734,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 1.6964,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 2.8918919563293457,
|
741 |
+
"eval_runtime": 43.9143,
|
742 |
+
"eval_samples_per_second": 22.772,
|
743 |
+
"eval_steps_per_second": 2.846,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 3.8439388275146484,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 1.7524,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 2.890720844268799,
|
756 |
+
"eval_runtime": 43.9225,
|
757 |
+
"eval_samples_per_second": 22.767,
|
758 |
+
"eval_steps_per_second": 2.846,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 3.7934892177581787,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 1.7211,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 2.8894593715667725,
|
771 |
+
"eval_runtime": 43.9778,
|
772 |
+
"eval_samples_per_second": 22.739,
|
773 |
+
"eval_steps_per_second": 2.842,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 3.739837884902954,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 1.6917,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 2.8792428970336914,
|
786 |
+
"eval_runtime": 43.9841,
|
787 |
+
"eval_samples_per_second": 22.735,
|
788 |
+
"eval_steps_per_second": 2.842,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 3.616173267364502,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 1.7032,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 2.9059717655181885,
|
801 |
+
"eval_runtime": 43.9541,
|
802 |
+
"eval_samples_per_second": 22.751,
|
803 |
+
"eval_steps_per_second": 2.844,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 4.411597728729248,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 1.5858,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 2.969313859939575,
|
816 |
+
"eval_runtime": 43.9721,
|
817 |
+
"eval_samples_per_second": 22.742,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
}
|
821 |
+
],
|
822 |
+
"logging_steps": 10,
|
823 |
+
"max_steps": 675,
|
824 |
+
"num_input_tokens_seen": 0,
|
825 |
+
"num_train_epochs": 9,
|
826 |
+
"save_steps": 10,
|
827 |
+
"stateful_callbacks": {
|
828 |
+
"TrainerControl": {
|
829 |
+
"args": {
|
830 |
+
"should_epoch_stop": false,
|
831 |
+
"should_evaluate": false,
|
832 |
+
"should_log": false,
|
833 |
+
"should_save": true,
|
834 |
+
"should_training_stop": false
|
835 |
+
},
|
836 |
+
"attributes": {}
|
837 |
+
}
|
838 |
+
},
|
839 |
+
"total_flos": 8.84847887253504e+16,
|
840 |
+
"train_batch_size": 8,
|
841 |
+
"trial_name": null,
|
842 |
+
"trial_params": null
|
843 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-550/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-550/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-550/trainer_state.json
ADDED
@@ -0,0 +1,858 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 7.333333333333333,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 550,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 3.286614179611206,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.8312,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.813601493835449,
|
651 |
+
"eval_runtime": 43.9055,
|
652 |
+
"eval_samples_per_second": 22.776,
|
653 |
+
"eval_steps_per_second": 2.847,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 3.152069568634033,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.7372,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 2.8068931102752686,
|
666 |
+
"eval_runtime": 43.9514,
|
667 |
+
"eval_samples_per_second": 22.752,
|
668 |
+
"eval_steps_per_second": 2.844,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 3.1378376483917236,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.7966,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 2.8000402450561523,
|
681 |
+
"eval_runtime": 43.9182,
|
682 |
+
"eval_samples_per_second": 22.77,
|
683 |
+
"eval_steps_per_second": 2.846,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.289393424987793,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 1.7021,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 2.8974051475524902,
|
696 |
+
"eval_runtime": 43.8673,
|
697 |
+
"eval_samples_per_second": 22.796,
|
698 |
+
"eval_steps_per_second": 2.85,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 3.662322998046875,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 1.6801,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 2.891542911529541,
|
711 |
+
"eval_runtime": 43.9675,
|
712 |
+
"eval_samples_per_second": 22.744,
|
713 |
+
"eval_steps_per_second": 2.843,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 3.6940433979034424,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 1.6549,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 2.884908676147461,
|
726 |
+
"eval_runtime": 43.9337,
|
727 |
+
"eval_samples_per_second": 22.762,
|
728 |
+
"eval_steps_per_second": 2.845,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 3.8792476654052734,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 1.6964,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 2.8918919563293457,
|
741 |
+
"eval_runtime": 43.9143,
|
742 |
+
"eval_samples_per_second": 22.772,
|
743 |
+
"eval_steps_per_second": 2.846,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 3.8439388275146484,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 1.7524,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 2.890720844268799,
|
756 |
+
"eval_runtime": 43.9225,
|
757 |
+
"eval_samples_per_second": 22.767,
|
758 |
+
"eval_steps_per_second": 2.846,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 3.7934892177581787,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 1.7211,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 2.8894593715667725,
|
771 |
+
"eval_runtime": 43.9778,
|
772 |
+
"eval_samples_per_second": 22.739,
|
773 |
+
"eval_steps_per_second": 2.842,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 3.739837884902954,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 1.6917,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 2.8792428970336914,
|
786 |
+
"eval_runtime": 43.9841,
|
787 |
+
"eval_samples_per_second": 22.735,
|
788 |
+
"eval_steps_per_second": 2.842,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 3.616173267364502,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 1.7032,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 2.9059717655181885,
|
801 |
+
"eval_runtime": 43.9541,
|
802 |
+
"eval_samples_per_second": 22.751,
|
803 |
+
"eval_steps_per_second": 2.844,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 4.411597728729248,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 1.5858,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 2.969313859939575,
|
816 |
+
"eval_runtime": 43.9721,
|
817 |
+
"eval_samples_per_second": 22.742,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 3.8424997329711914,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 1.6097,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 2.9442644119262695,
|
831 |
+
"eval_runtime": 43.9947,
|
832 |
+
"eval_samples_per_second": 22.73,
|
833 |
+
"eval_steps_per_second": 2.841,
|
834 |
+
"step": 550
|
835 |
+
}
|
836 |
+
],
|
837 |
+
"logging_steps": 10,
|
838 |
+
"max_steps": 675,
|
839 |
+
"num_input_tokens_seen": 0,
|
840 |
+
"num_train_epochs": 9,
|
841 |
+
"save_steps": 10,
|
842 |
+
"stateful_callbacks": {
|
843 |
+
"TrainerControl": {
|
844 |
+
"args": {
|
845 |
+
"should_epoch_stop": false,
|
846 |
+
"should_evaluate": false,
|
847 |
+
"should_log": false,
|
848 |
+
"should_save": true,
|
849 |
+
"should_training_stop": false
|
850 |
+
},
|
851 |
+
"attributes": {}
|
852 |
+
}
|
853 |
+
},
|
854 |
+
"total_flos": 9.0123395923968e+16,
|
855 |
+
"train_batch_size": 8,
|
856 |
+
"trial_name": null,
|
857 |
+
"trial_params": null
|
858 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-560/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-560/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-560/trainer_state.json
ADDED
@@ -0,0 +1,873 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 7.466666666666667,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 560,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 3.286614179611206,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.8312,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.813601493835449,
|
651 |
+
"eval_runtime": 43.9055,
|
652 |
+
"eval_samples_per_second": 22.776,
|
653 |
+
"eval_steps_per_second": 2.847,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 3.152069568634033,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.7372,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 2.8068931102752686,
|
666 |
+
"eval_runtime": 43.9514,
|
667 |
+
"eval_samples_per_second": 22.752,
|
668 |
+
"eval_steps_per_second": 2.844,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 3.1378376483917236,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.7966,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 2.8000402450561523,
|
681 |
+
"eval_runtime": 43.9182,
|
682 |
+
"eval_samples_per_second": 22.77,
|
683 |
+
"eval_steps_per_second": 2.846,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.289393424987793,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 1.7021,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 2.8974051475524902,
|
696 |
+
"eval_runtime": 43.8673,
|
697 |
+
"eval_samples_per_second": 22.796,
|
698 |
+
"eval_steps_per_second": 2.85,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 3.662322998046875,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 1.6801,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 2.891542911529541,
|
711 |
+
"eval_runtime": 43.9675,
|
712 |
+
"eval_samples_per_second": 22.744,
|
713 |
+
"eval_steps_per_second": 2.843,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 3.6940433979034424,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 1.6549,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 2.884908676147461,
|
726 |
+
"eval_runtime": 43.9337,
|
727 |
+
"eval_samples_per_second": 22.762,
|
728 |
+
"eval_steps_per_second": 2.845,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 3.8792476654052734,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 1.6964,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 2.8918919563293457,
|
741 |
+
"eval_runtime": 43.9143,
|
742 |
+
"eval_samples_per_second": 22.772,
|
743 |
+
"eval_steps_per_second": 2.846,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 3.8439388275146484,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 1.7524,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 2.890720844268799,
|
756 |
+
"eval_runtime": 43.9225,
|
757 |
+
"eval_samples_per_second": 22.767,
|
758 |
+
"eval_steps_per_second": 2.846,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 3.7934892177581787,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 1.7211,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 2.8894593715667725,
|
771 |
+
"eval_runtime": 43.9778,
|
772 |
+
"eval_samples_per_second": 22.739,
|
773 |
+
"eval_steps_per_second": 2.842,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 3.739837884902954,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 1.6917,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 2.8792428970336914,
|
786 |
+
"eval_runtime": 43.9841,
|
787 |
+
"eval_samples_per_second": 22.735,
|
788 |
+
"eval_steps_per_second": 2.842,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 3.616173267364502,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 1.7032,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 2.9059717655181885,
|
801 |
+
"eval_runtime": 43.9541,
|
802 |
+
"eval_samples_per_second": 22.751,
|
803 |
+
"eval_steps_per_second": 2.844,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 4.411597728729248,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 1.5858,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 2.969313859939575,
|
816 |
+
"eval_runtime": 43.9721,
|
817 |
+
"eval_samples_per_second": 22.742,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 3.8424997329711914,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 1.6097,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 2.9442644119262695,
|
831 |
+
"eval_runtime": 43.9947,
|
832 |
+
"eval_samples_per_second": 22.73,
|
833 |
+
"eval_steps_per_second": 2.841,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 5.166232109069824,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 1.6124,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 2.945424795150757,
|
846 |
+
"eval_runtime": 43.9682,
|
847 |
+
"eval_samples_per_second": 22.744,
|
848 |
+
"eval_steps_per_second": 2.843,
|
849 |
+
"step": 560
|
850 |
+
}
|
851 |
+
],
|
852 |
+
"logging_steps": 10,
|
853 |
+
"max_steps": 675,
|
854 |
+
"num_input_tokens_seen": 0,
|
855 |
+
"num_train_epochs": 9,
|
856 |
+
"save_steps": 10,
|
857 |
+
"stateful_callbacks": {
|
858 |
+
"TrainerControl": {
|
859 |
+
"args": {
|
860 |
+
"should_epoch_stop": false,
|
861 |
+
"should_evaluate": false,
|
862 |
+
"should_log": false,
|
863 |
+
"should_save": true,
|
864 |
+
"should_training_stop": false
|
865 |
+
},
|
866 |
+
"attributes": {}
|
867 |
+
}
|
868 |
+
},
|
869 |
+
"total_flos": 9.17620031225856e+16,
|
870 |
+
"train_batch_size": 8,
|
871 |
+
"trial_name": null,
|
872 |
+
"trial_params": null
|
873 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-570/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-570/adapter_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/workspace/pythia-6_9b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.1,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"dense_h_to_4h",
|
24 |
+
"query_key_value",
|
25 |
+
"dense",
|
26 |
+
"dense_4h_to_h"
|
27 |
+
],
|
28 |
+
"task_type": "CAUSAL_LM",
|
29 |
+
"use_dora": false,
|
30 |
+
"use_rslora": false
|
31 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-570/trainer_state.json
ADDED
@@ -0,0 +1,888 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.5317564010620117,
|
3 |
+
"best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
|
4 |
+
"epoch": 7.6,
|
5 |
+
"eval_steps": 10,
|
6 |
+
"global_step": 570,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.13333333333333333,
|
13 |
+
"grad_norm": 0.4347652792930603,
|
14 |
+
"learning_rate": 7.881481481481482e-05,
|
15 |
+
"loss": 2.4954,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.13333333333333333,
|
20 |
+
"eval_loss": 2.556234359741211,
|
21 |
+
"eval_runtime": 43.818,
|
22 |
+
"eval_samples_per_second": 22.822,
|
23 |
+
"eval_steps_per_second": 2.853,
|
24 |
+
"step": 10
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.26666666666666666,
|
28 |
+
"grad_norm": 0.40230727195739746,
|
29 |
+
"learning_rate": 7.762962962962963e-05,
|
30 |
+
"loss": 2.5574,
|
31 |
+
"step": 20
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.26666666666666666,
|
35 |
+
"eval_loss": 2.552377462387085,
|
36 |
+
"eval_runtime": 43.8488,
|
37 |
+
"eval_samples_per_second": 22.806,
|
38 |
+
"eval_steps_per_second": 2.851,
|
39 |
+
"step": 20
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.4,
|
43 |
+
"grad_norm": 0.3980488181114197,
|
44 |
+
"learning_rate": 7.644444444444445e-05,
|
45 |
+
"loss": 2.4669,
|
46 |
+
"step": 30
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"epoch": 0.4,
|
50 |
+
"eval_loss": 2.549164056777954,
|
51 |
+
"eval_runtime": 43.8389,
|
52 |
+
"eval_samples_per_second": 22.811,
|
53 |
+
"eval_steps_per_second": 2.851,
|
54 |
+
"step": 30
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.5333333333333333,
|
58 |
+
"grad_norm": 0.4006142020225525,
|
59 |
+
"learning_rate": 7.525925925925926e-05,
|
60 |
+
"loss": 2.5199,
|
61 |
+
"step": 40
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"epoch": 0.5333333333333333,
|
65 |
+
"eval_loss": 2.546046495437622,
|
66 |
+
"eval_runtime": 43.8456,
|
67 |
+
"eval_samples_per_second": 22.807,
|
68 |
+
"eval_steps_per_second": 2.851,
|
69 |
+
"step": 40
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.6666666666666666,
|
73 |
+
"grad_norm": 0.4202616512775421,
|
74 |
+
"learning_rate": 7.407407407407409e-05,
|
75 |
+
"loss": 2.5619,
|
76 |
+
"step": 50
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"epoch": 0.6666666666666666,
|
80 |
+
"eval_loss": 2.5431504249572754,
|
81 |
+
"eval_runtime": 43.8379,
|
82 |
+
"eval_samples_per_second": 22.811,
|
83 |
+
"eval_steps_per_second": 2.851,
|
84 |
+
"step": 50
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 0.8,
|
88 |
+
"grad_norm": 0.3871513307094574,
|
89 |
+
"learning_rate": 7.28888888888889e-05,
|
90 |
+
"loss": 2.5057,
|
91 |
+
"step": 60
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"epoch": 0.8,
|
95 |
+
"eval_loss": 2.5413730144500732,
|
96 |
+
"eval_runtime": 43.8646,
|
97 |
+
"eval_samples_per_second": 22.797,
|
98 |
+
"eval_steps_per_second": 2.85,
|
99 |
+
"step": 60
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.9333333333333333,
|
103 |
+
"grad_norm": 0.36390039324760437,
|
104 |
+
"learning_rate": 7.170370370370371e-05,
|
105 |
+
"loss": 2.4606,
|
106 |
+
"step": 70
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.9333333333333333,
|
110 |
+
"eval_loss": 2.5389301776885986,
|
111 |
+
"eval_runtime": 43.8837,
|
112 |
+
"eval_samples_per_second": 22.788,
|
113 |
+
"eval_steps_per_second": 2.848,
|
114 |
+
"step": 70
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.0666666666666667,
|
118 |
+
"grad_norm": 0.4081075191497803,
|
119 |
+
"learning_rate": 7.051851851851853e-05,
|
120 |
+
"loss": 2.4696,
|
121 |
+
"step": 80
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.0666666666666667,
|
125 |
+
"eval_loss": 2.5368435382843018,
|
126 |
+
"eval_runtime": 43.8696,
|
127 |
+
"eval_samples_per_second": 22.795,
|
128 |
+
"eval_steps_per_second": 2.849,
|
129 |
+
"step": 80
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 1.2,
|
133 |
+
"grad_norm": 0.5448070764541626,
|
134 |
+
"learning_rate": 6.933333333333334e-05,
|
135 |
+
"loss": 2.4258,
|
136 |
+
"step": 90
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 1.2,
|
140 |
+
"eval_loss": 2.538212776184082,
|
141 |
+
"eval_runtime": 43.8585,
|
142 |
+
"eval_samples_per_second": 22.801,
|
143 |
+
"eval_steps_per_second": 2.85,
|
144 |
+
"step": 90
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 1.3333333333333333,
|
148 |
+
"grad_norm": 0.7155500650405884,
|
149 |
+
"learning_rate": 6.814814814814815e-05,
|
150 |
+
"loss": 2.4865,
|
151 |
+
"step": 100
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 1.3333333333333333,
|
155 |
+
"eval_loss": 2.540060043334961,
|
156 |
+
"eval_runtime": 43.8337,
|
157 |
+
"eval_samples_per_second": 22.813,
|
158 |
+
"eval_steps_per_second": 2.852,
|
159 |
+
"step": 100
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 1.4666666666666668,
|
163 |
+
"grad_norm": 0.7326843738555908,
|
164 |
+
"learning_rate": 6.696296296296296e-05,
|
165 |
+
"loss": 2.4391,
|
166 |
+
"step": 110
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 1.4666666666666668,
|
170 |
+
"eval_loss": 2.5385019779205322,
|
171 |
+
"eval_runtime": 43.8789,
|
172 |
+
"eval_samples_per_second": 22.79,
|
173 |
+
"eval_steps_per_second": 2.849,
|
174 |
+
"step": 110
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 1.6,
|
178 |
+
"grad_norm": 0.8026068806648254,
|
179 |
+
"learning_rate": 6.577777777777777e-05,
|
180 |
+
"loss": 2.4001,
|
181 |
+
"step": 120
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 1.6,
|
185 |
+
"eval_loss": 2.5356342792510986,
|
186 |
+
"eval_runtime": 43.8699,
|
187 |
+
"eval_samples_per_second": 22.795,
|
188 |
+
"eval_steps_per_second": 2.849,
|
189 |
+
"step": 120
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 1.7333333333333334,
|
193 |
+
"grad_norm": 0.8492558598518372,
|
194 |
+
"learning_rate": 6.45925925925926e-05,
|
195 |
+
"loss": 2.387,
|
196 |
+
"step": 130
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 1.7333333333333334,
|
200 |
+
"eval_loss": 2.5329699516296387,
|
201 |
+
"eval_runtime": 43.8654,
|
202 |
+
"eval_samples_per_second": 22.797,
|
203 |
+
"eval_steps_per_second": 2.85,
|
204 |
+
"step": 130
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 1.8666666666666667,
|
208 |
+
"grad_norm": 1.1200364828109741,
|
209 |
+
"learning_rate": 6.340740740740741e-05,
|
210 |
+
"loss": 2.3817,
|
211 |
+
"step": 140
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.8666666666666667,
|
215 |
+
"eval_loss": 2.5319204330444336,
|
216 |
+
"eval_runtime": 43.847,
|
217 |
+
"eval_samples_per_second": 22.807,
|
218 |
+
"eval_steps_per_second": 2.851,
|
219 |
+
"step": 140
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 2.0,
|
223 |
+
"grad_norm": 0.9766451120376587,
|
224 |
+
"learning_rate": 6.222222222222223e-05,
|
225 |
+
"loss": 2.4193,
|
226 |
+
"step": 150
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 2.0,
|
230 |
+
"eval_loss": 2.5317564010620117,
|
231 |
+
"eval_runtime": 43.8504,
|
232 |
+
"eval_samples_per_second": 22.805,
|
233 |
+
"eval_steps_per_second": 2.851,
|
234 |
+
"step": 150
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 2.1333333333333333,
|
238 |
+
"grad_norm": 1.0703226327896118,
|
239 |
+
"learning_rate": 6.103703703703704e-05,
|
240 |
+
"loss": 2.3341,
|
241 |
+
"step": 160
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 2.1333333333333333,
|
245 |
+
"eval_loss": 2.5564167499542236,
|
246 |
+
"eval_runtime": 43.8299,
|
247 |
+
"eval_samples_per_second": 22.815,
|
248 |
+
"eval_steps_per_second": 2.852,
|
249 |
+
"step": 160
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 2.2666666666666666,
|
253 |
+
"grad_norm": 1.3115178346633911,
|
254 |
+
"learning_rate": 5.9851851851851855e-05,
|
255 |
+
"loss": 2.2182,
|
256 |
+
"step": 170
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 2.2666666666666666,
|
260 |
+
"eval_loss": 2.5810468196868896,
|
261 |
+
"eval_runtime": 43.8366,
|
262 |
+
"eval_samples_per_second": 22.812,
|
263 |
+
"eval_steps_per_second": 2.852,
|
264 |
+
"step": 170
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 2.4,
|
268 |
+
"grad_norm": 1.4998687505722046,
|
269 |
+
"learning_rate": 5.8666666666666665e-05,
|
270 |
+
"loss": 2.2379,
|
271 |
+
"step": 180
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 2.4,
|
275 |
+
"eval_loss": 2.580641269683838,
|
276 |
+
"eval_runtime": 43.8362,
|
277 |
+
"eval_samples_per_second": 22.812,
|
278 |
+
"eval_steps_per_second": 2.852,
|
279 |
+
"step": 180
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 2.533333333333333,
|
283 |
+
"grad_norm": 1.6269217729568481,
|
284 |
+
"learning_rate": 5.748148148148149e-05,
|
285 |
+
"loss": 2.2346,
|
286 |
+
"step": 190
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 2.533333333333333,
|
290 |
+
"eval_loss": 2.572070360183716,
|
291 |
+
"eval_runtime": 43.8376,
|
292 |
+
"eval_samples_per_second": 22.811,
|
293 |
+
"eval_steps_per_second": 2.851,
|
294 |
+
"step": 190
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 2.6666666666666665,
|
298 |
+
"grad_norm": 1.5595163106918335,
|
299 |
+
"learning_rate": 5.62962962962963e-05,
|
300 |
+
"loss": 2.225,
|
301 |
+
"step": 200
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 2.6666666666666665,
|
305 |
+
"eval_loss": 2.574326276779175,
|
306 |
+
"eval_runtime": 43.8537,
|
307 |
+
"eval_samples_per_second": 22.803,
|
308 |
+
"eval_steps_per_second": 2.85,
|
309 |
+
"step": 200
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 2.8,
|
313 |
+
"grad_norm": 1.673547387123108,
|
314 |
+
"learning_rate": 5.511111111111112e-05,
|
315 |
+
"loss": 2.2471,
|
316 |
+
"step": 210
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 2.8,
|
320 |
+
"eval_loss": 2.5765159130096436,
|
321 |
+
"eval_runtime": 43.8369,
|
322 |
+
"eval_samples_per_second": 22.812,
|
323 |
+
"eval_steps_per_second": 2.851,
|
324 |
+
"step": 210
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.9333333333333336,
|
328 |
+
"grad_norm": 1.5295490026474,
|
329 |
+
"learning_rate": 5.392592592592593e-05,
|
330 |
+
"loss": 2.204,
|
331 |
+
"step": 220
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.9333333333333336,
|
335 |
+
"eval_loss": 2.5766921043395996,
|
336 |
+
"eval_runtime": 43.8443,
|
337 |
+
"eval_samples_per_second": 22.808,
|
338 |
+
"eval_steps_per_second": 2.851,
|
339 |
+
"step": 220
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 3.066666666666667,
|
343 |
+
"grad_norm": 1.6709380149841309,
|
344 |
+
"learning_rate": 5.274074074074074e-05,
|
345 |
+
"loss": 2.1753,
|
346 |
+
"step": 230
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 3.066666666666667,
|
350 |
+
"eval_loss": 2.602360248565674,
|
351 |
+
"eval_runtime": 43.8576,
|
352 |
+
"eval_samples_per_second": 22.801,
|
353 |
+
"eval_steps_per_second": 2.85,
|
354 |
+
"step": 230
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 3.2,
|
358 |
+
"grad_norm": 2.053478240966797,
|
359 |
+
"learning_rate": 5.155555555555556e-05,
|
360 |
+
"loss": 2.0405,
|
361 |
+
"step": 240
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 3.2,
|
365 |
+
"eval_loss": 2.6636874675750732,
|
366 |
+
"eval_runtime": 43.8509,
|
367 |
+
"eval_samples_per_second": 22.805,
|
368 |
+
"eval_steps_per_second": 2.851,
|
369 |
+
"step": 240
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 3.3333333333333335,
|
373 |
+
"grad_norm": 1.8616771697998047,
|
374 |
+
"learning_rate": 5.037037037037037e-05,
|
375 |
+
"loss": 2.0265,
|
376 |
+
"step": 250
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"epoch": 3.3333333333333335,
|
380 |
+
"eval_loss": 2.6536307334899902,
|
381 |
+
"eval_runtime": 43.8433,
|
382 |
+
"eval_samples_per_second": 22.808,
|
383 |
+
"eval_steps_per_second": 2.851,
|
384 |
+
"step": 250
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 3.466666666666667,
|
388 |
+
"grad_norm": 2.1498146057128906,
|
389 |
+
"learning_rate": 4.918518518518519e-05,
|
390 |
+
"loss": 2.1386,
|
391 |
+
"step": 260
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 3.466666666666667,
|
395 |
+
"eval_loss": 2.658257246017456,
|
396 |
+
"eval_runtime": 43.8516,
|
397 |
+
"eval_samples_per_second": 22.804,
|
398 |
+
"eval_steps_per_second": 2.851,
|
399 |
+
"step": 260
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 3.6,
|
403 |
+
"grad_norm": 2.203857660293579,
|
404 |
+
"learning_rate": 4.8e-05,
|
405 |
+
"loss": 2.0367,
|
406 |
+
"step": 270
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 3.6,
|
410 |
+
"eval_loss": 2.658139228820801,
|
411 |
+
"eval_runtime": 43.8709,
|
412 |
+
"eval_samples_per_second": 22.794,
|
413 |
+
"eval_steps_per_second": 2.849,
|
414 |
+
"step": 270
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 3.7333333333333334,
|
418 |
+
"grad_norm": 2.0805578231811523,
|
419 |
+
"learning_rate": 4.681481481481481e-05,
|
420 |
+
"loss": 2.0226,
|
421 |
+
"step": 280
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 3.7333333333333334,
|
425 |
+
"eval_loss": 2.646563768386841,
|
426 |
+
"eval_runtime": 43.8726,
|
427 |
+
"eval_samples_per_second": 22.793,
|
428 |
+
"eval_steps_per_second": 2.849,
|
429 |
+
"step": 280
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.8666666666666667,
|
433 |
+
"grad_norm": 2.27193546295166,
|
434 |
+
"learning_rate": 4.5629629629629636e-05,
|
435 |
+
"loss": 2.1099,
|
436 |
+
"step": 290
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.8666666666666667,
|
440 |
+
"eval_loss": 2.6486735343933105,
|
441 |
+
"eval_runtime": 43.881,
|
442 |
+
"eval_samples_per_second": 22.789,
|
443 |
+
"eval_steps_per_second": 2.849,
|
444 |
+
"step": 290
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"epoch": 4.0,
|
448 |
+
"grad_norm": 2.0627055168151855,
|
449 |
+
"learning_rate": 4.444444444444445e-05,
|
450 |
+
"loss": 2.0996,
|
451 |
+
"step": 300
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 4.0,
|
455 |
+
"eval_loss": 2.644541025161743,
|
456 |
+
"eval_runtime": 43.9055,
|
457 |
+
"eval_samples_per_second": 22.776,
|
458 |
+
"eval_steps_per_second": 2.847,
|
459 |
+
"step": 300
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 4.133333333333334,
|
463 |
+
"grad_norm": 2.6526894569396973,
|
464 |
+
"learning_rate": 4.3259259259259264e-05,
|
465 |
+
"loss": 1.8896,
|
466 |
+
"step": 310
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 4.133333333333334,
|
470 |
+
"eval_loss": 2.7607998847961426,
|
471 |
+
"eval_runtime": 43.8953,
|
472 |
+
"eval_samples_per_second": 22.781,
|
473 |
+
"eval_steps_per_second": 2.848,
|
474 |
+
"step": 310
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 4.266666666666667,
|
478 |
+
"grad_norm": 2.813822031021118,
|
479 |
+
"learning_rate": 4.2074074074074075e-05,
|
480 |
+
"loss": 1.8568,
|
481 |
+
"step": 320
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 4.266666666666667,
|
485 |
+
"eval_loss": 2.7357044219970703,
|
486 |
+
"eval_runtime": 43.8795,
|
487 |
+
"eval_samples_per_second": 22.79,
|
488 |
+
"eval_steps_per_second": 2.849,
|
489 |
+
"step": 320
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 4.4,
|
493 |
+
"grad_norm": 3.134248733520508,
|
494 |
+
"learning_rate": 4.088888888888889e-05,
|
495 |
+
"loss": 1.9636,
|
496 |
+
"step": 330
|
497 |
+
},
|
498 |
+
{
|
499 |
+
"epoch": 4.4,
|
500 |
+
"eval_loss": 2.742431640625,
|
501 |
+
"eval_runtime": 43.8639,
|
502 |
+
"eval_samples_per_second": 22.798,
|
503 |
+
"eval_steps_per_second": 2.85,
|
504 |
+
"step": 330
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 4.533333333333333,
|
508 |
+
"grad_norm": 2.727226495742798,
|
509 |
+
"learning_rate": 3.970370370370371e-05,
|
510 |
+
"loss": 1.9148,
|
511 |
+
"step": 340
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 4.533333333333333,
|
515 |
+
"eval_loss": 2.7314682006835938,
|
516 |
+
"eval_runtime": 43.852,
|
517 |
+
"eval_samples_per_second": 22.804,
|
518 |
+
"eval_steps_per_second": 2.85,
|
519 |
+
"step": 340
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 4.666666666666667,
|
523 |
+
"grad_norm": 2.768984079360962,
|
524 |
+
"learning_rate": 3.851851851851852e-05,
|
525 |
+
"loss": 1.9134,
|
526 |
+
"step": 350
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 4.666666666666667,
|
530 |
+
"eval_loss": 2.7299180030822754,
|
531 |
+
"eval_runtime": 43.8498,
|
532 |
+
"eval_samples_per_second": 22.805,
|
533 |
+
"eval_steps_per_second": 2.851,
|
534 |
+
"step": 350
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 4.8,
|
538 |
+
"grad_norm": 3.0203487873077393,
|
539 |
+
"learning_rate": 3.733333333333334e-05,
|
540 |
+
"loss": 1.9445,
|
541 |
+
"step": 360
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.8,
|
545 |
+
"eval_loss": 2.7333309650421143,
|
546 |
+
"eval_runtime": 43.8634,
|
547 |
+
"eval_samples_per_second": 22.798,
|
548 |
+
"eval_steps_per_second": 2.85,
|
549 |
+
"step": 360
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 4.933333333333334,
|
553 |
+
"grad_norm": 2.721759080886841,
|
554 |
+
"learning_rate": 3.614814814814815e-05,
|
555 |
+
"loss": 1.9199,
|
556 |
+
"step": 370
|
557 |
+
},
|
558 |
+
{
|
559 |
+
"epoch": 4.933333333333334,
|
560 |
+
"eval_loss": 2.7230074405670166,
|
561 |
+
"eval_runtime": 43.8351,
|
562 |
+
"eval_samples_per_second": 22.813,
|
563 |
+
"eval_steps_per_second": 2.852,
|
564 |
+
"step": 370
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 5.066666666666666,
|
568 |
+
"grad_norm": 2.812037467956543,
|
569 |
+
"learning_rate": 3.4962962962962965e-05,
|
570 |
+
"loss": 1.9396,
|
571 |
+
"step": 380
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 5.066666666666666,
|
575 |
+
"eval_loss": 2.7738075256347656,
|
576 |
+
"eval_runtime": 43.8405,
|
577 |
+
"eval_samples_per_second": 22.81,
|
578 |
+
"eval_steps_per_second": 2.851,
|
579 |
+
"step": 380
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 5.2,
|
583 |
+
"grad_norm": 3.347679376602173,
|
584 |
+
"learning_rate": 3.377777777777778e-05,
|
585 |
+
"loss": 1.8374,
|
586 |
+
"step": 390
|
587 |
+
},
|
588 |
+
{
|
589 |
+
"epoch": 5.2,
|
590 |
+
"eval_loss": 2.830467700958252,
|
591 |
+
"eval_runtime": 43.8379,
|
592 |
+
"eval_samples_per_second": 22.811,
|
593 |
+
"eval_steps_per_second": 2.851,
|
594 |
+
"step": 390
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 5.333333333333333,
|
598 |
+
"grad_norm": 3.1343460083007812,
|
599 |
+
"learning_rate": 3.259259259259259e-05,
|
600 |
+
"loss": 1.7472,
|
601 |
+
"step": 400
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 5.333333333333333,
|
605 |
+
"eval_loss": 2.8105757236480713,
|
606 |
+
"eval_runtime": 43.9522,
|
607 |
+
"eval_samples_per_second": 22.752,
|
608 |
+
"eval_steps_per_second": 2.844,
|
609 |
+
"step": 400
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 5.466666666666667,
|
613 |
+
"grad_norm": 3.431727170944214,
|
614 |
+
"learning_rate": 3.140740740740741e-05,
|
615 |
+
"loss": 1.8274,
|
616 |
+
"step": 410
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 5.466666666666667,
|
620 |
+
"eval_loss": 2.816023826599121,
|
621 |
+
"eval_runtime": 43.9615,
|
622 |
+
"eval_samples_per_second": 22.747,
|
623 |
+
"eval_steps_per_second": 2.843,
|
624 |
+
"step": 410
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 5.6,
|
628 |
+
"grad_norm": 3.4572854042053223,
|
629 |
+
"learning_rate": 3.0222222222222225e-05,
|
630 |
+
"loss": 1.8135,
|
631 |
+
"step": 420
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 5.6,
|
635 |
+
"eval_loss": 2.817023992538452,
|
636 |
+
"eval_runtime": 43.9443,
|
637 |
+
"eval_samples_per_second": 22.756,
|
638 |
+
"eval_steps_per_second": 2.845,
|
639 |
+
"step": 420
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 5.733333333333333,
|
643 |
+
"grad_norm": 3.286614179611206,
|
644 |
+
"learning_rate": 2.9037037037037042e-05,
|
645 |
+
"loss": 1.8312,
|
646 |
+
"step": 430
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 5.733333333333333,
|
650 |
+
"eval_loss": 2.813601493835449,
|
651 |
+
"eval_runtime": 43.9055,
|
652 |
+
"eval_samples_per_second": 22.776,
|
653 |
+
"eval_steps_per_second": 2.847,
|
654 |
+
"step": 430
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 5.866666666666667,
|
658 |
+
"grad_norm": 3.152069568634033,
|
659 |
+
"learning_rate": 2.7851851851851856e-05,
|
660 |
+
"loss": 1.7372,
|
661 |
+
"step": 440
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 5.866666666666667,
|
665 |
+
"eval_loss": 2.8068931102752686,
|
666 |
+
"eval_runtime": 43.9514,
|
667 |
+
"eval_samples_per_second": 22.752,
|
668 |
+
"eval_steps_per_second": 2.844,
|
669 |
+
"step": 440
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 6.0,
|
673 |
+
"grad_norm": 3.1378376483917236,
|
674 |
+
"learning_rate": 2.6666666666666667e-05,
|
675 |
+
"loss": 1.7966,
|
676 |
+
"step": 450
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 6.0,
|
680 |
+
"eval_loss": 2.8000402450561523,
|
681 |
+
"eval_runtime": 43.9182,
|
682 |
+
"eval_samples_per_second": 22.77,
|
683 |
+
"eval_steps_per_second": 2.846,
|
684 |
+
"step": 450
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 6.133333333333334,
|
688 |
+
"grad_norm": 3.289393424987793,
|
689 |
+
"learning_rate": 2.5481481481481484e-05,
|
690 |
+
"loss": 1.7021,
|
691 |
+
"step": 460
|
692 |
+
},
|
693 |
+
{
|
694 |
+
"epoch": 6.133333333333334,
|
695 |
+
"eval_loss": 2.8974051475524902,
|
696 |
+
"eval_runtime": 43.8673,
|
697 |
+
"eval_samples_per_second": 22.796,
|
698 |
+
"eval_steps_per_second": 2.85,
|
699 |
+
"step": 460
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 6.266666666666667,
|
703 |
+
"grad_norm": 3.662322998046875,
|
704 |
+
"learning_rate": 2.4296296296296298e-05,
|
705 |
+
"loss": 1.6801,
|
706 |
+
"step": 470
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 6.266666666666667,
|
710 |
+
"eval_loss": 2.891542911529541,
|
711 |
+
"eval_runtime": 43.9675,
|
712 |
+
"eval_samples_per_second": 22.744,
|
713 |
+
"eval_steps_per_second": 2.843,
|
714 |
+
"step": 470
|
715 |
+
},
|
716 |
+
{
|
717 |
+
"epoch": 6.4,
|
718 |
+
"grad_norm": 3.6940433979034424,
|
719 |
+
"learning_rate": 2.3111111111111112e-05,
|
720 |
+
"loss": 1.6549,
|
721 |
+
"step": 480
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"epoch": 6.4,
|
725 |
+
"eval_loss": 2.884908676147461,
|
726 |
+
"eval_runtime": 43.9337,
|
727 |
+
"eval_samples_per_second": 22.762,
|
728 |
+
"eval_steps_per_second": 2.845,
|
729 |
+
"step": 480
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 6.533333333333333,
|
733 |
+
"grad_norm": 3.8792476654052734,
|
734 |
+
"learning_rate": 2.192592592592593e-05,
|
735 |
+
"loss": 1.6964,
|
736 |
+
"step": 490
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 6.533333333333333,
|
740 |
+
"eval_loss": 2.8918919563293457,
|
741 |
+
"eval_runtime": 43.9143,
|
742 |
+
"eval_samples_per_second": 22.772,
|
743 |
+
"eval_steps_per_second": 2.846,
|
744 |
+
"step": 490
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 6.666666666666667,
|
748 |
+
"grad_norm": 3.8439388275146484,
|
749 |
+
"learning_rate": 2.074074074074074e-05,
|
750 |
+
"loss": 1.7524,
|
751 |
+
"step": 500
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 6.666666666666667,
|
755 |
+
"eval_loss": 2.890720844268799,
|
756 |
+
"eval_runtime": 43.9225,
|
757 |
+
"eval_samples_per_second": 22.767,
|
758 |
+
"eval_steps_per_second": 2.846,
|
759 |
+
"step": 500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 6.8,
|
763 |
+
"grad_norm": 3.7934892177581787,
|
764 |
+
"learning_rate": 1.9555555555555557e-05,
|
765 |
+
"loss": 1.7211,
|
766 |
+
"step": 510
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 6.8,
|
770 |
+
"eval_loss": 2.8894593715667725,
|
771 |
+
"eval_runtime": 43.9778,
|
772 |
+
"eval_samples_per_second": 22.739,
|
773 |
+
"eval_steps_per_second": 2.842,
|
774 |
+
"step": 510
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 6.933333333333334,
|
778 |
+
"grad_norm": 3.739837884902954,
|
779 |
+
"learning_rate": 1.837037037037037e-05,
|
780 |
+
"loss": 1.6917,
|
781 |
+
"step": 520
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 6.933333333333334,
|
785 |
+
"eval_loss": 2.8792428970336914,
|
786 |
+
"eval_runtime": 43.9841,
|
787 |
+
"eval_samples_per_second": 22.735,
|
788 |
+
"eval_steps_per_second": 2.842,
|
789 |
+
"step": 520
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 7.066666666666666,
|
793 |
+
"grad_norm": 3.616173267364502,
|
794 |
+
"learning_rate": 1.7185185185185185e-05,
|
795 |
+
"loss": 1.7032,
|
796 |
+
"step": 530
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 7.066666666666666,
|
800 |
+
"eval_loss": 2.9059717655181885,
|
801 |
+
"eval_runtime": 43.9541,
|
802 |
+
"eval_samples_per_second": 22.751,
|
803 |
+
"eval_steps_per_second": 2.844,
|
804 |
+
"step": 530
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 7.2,
|
808 |
+
"grad_norm": 4.411597728729248,
|
809 |
+
"learning_rate": 1.6000000000000003e-05,
|
810 |
+
"loss": 1.5858,
|
811 |
+
"step": 540
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 7.2,
|
815 |
+
"eval_loss": 2.969313859939575,
|
816 |
+
"eval_runtime": 43.9721,
|
817 |
+
"eval_samples_per_second": 22.742,
|
818 |
+
"eval_steps_per_second": 2.843,
|
819 |
+
"step": 540
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 7.333333333333333,
|
823 |
+
"grad_norm": 3.8424997329711914,
|
824 |
+
"learning_rate": 1.4814814814814815e-05,
|
825 |
+
"loss": 1.6097,
|
826 |
+
"step": 550
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 7.333333333333333,
|
830 |
+
"eval_loss": 2.9442644119262695,
|
831 |
+
"eval_runtime": 43.9947,
|
832 |
+
"eval_samples_per_second": 22.73,
|
833 |
+
"eval_steps_per_second": 2.841,
|
834 |
+
"step": 550
|
835 |
+
},
|
836 |
+
{
|
837 |
+
"epoch": 7.466666666666667,
|
838 |
+
"grad_norm": 5.166232109069824,
|
839 |
+
"learning_rate": 1.362962962962963e-05,
|
840 |
+
"loss": 1.6124,
|
841 |
+
"step": 560
|
842 |
+
},
|
843 |
+
{
|
844 |
+
"epoch": 7.466666666666667,
|
845 |
+
"eval_loss": 2.945424795150757,
|
846 |
+
"eval_runtime": 43.9682,
|
847 |
+
"eval_samples_per_second": 22.744,
|
848 |
+
"eval_steps_per_second": 2.843,
|
849 |
+
"step": 560
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 7.6,
|
853 |
+
"grad_norm": 4.192744731903076,
|
854 |
+
"learning_rate": 1.2444444444444446e-05,
|
855 |
+
"loss": 1.6204,
|
856 |
+
"step": 570
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 7.6,
|
860 |
+
"eval_loss": 2.9401402473449707,
|
861 |
+
"eval_runtime": 43.9497,
|
862 |
+
"eval_samples_per_second": 22.753,
|
863 |
+
"eval_steps_per_second": 2.844,
|
864 |
+
"step": 570
|
865 |
+
}
|
866 |
+
],
|
867 |
+
"logging_steps": 10,
|
868 |
+
"max_steps": 675,
|
869 |
+
"num_input_tokens_seen": 0,
|
870 |
+
"num_train_epochs": 9,
|
871 |
+
"save_steps": 10,
|
872 |
+
"stateful_callbacks": {
|
873 |
+
"TrainerControl": {
|
874 |
+
"args": {
|
875 |
+
"should_epoch_stop": false,
|
876 |
+
"should_evaluate": false,
|
877 |
+
"should_log": false,
|
878 |
+
"should_save": true,
|
879 |
+
"should_training_stop": false
|
880 |
+
},
|
881 |
+
"attributes": {}
|
882 |
+
}
|
883 |
+
},
|
884 |
+
"total_flos": 9.34006103212032e+16,
|
885 |
+
"train_batch_size": 8,
|
886 |
+
"trial_name": null,
|
887 |
+
"trial_params": null
|
888 |
+
}
|
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-580/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: /workspace/pythia-6_9b
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.13.2
|