bxiong commited on
Commit
918ce34
·
verified ·
1 Parent(s): 7c9c8b3

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-10/README.md +202 -0
  2. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-10/adapter_config.json +31 -0
  3. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-10/trainer_state.json +48 -0
  4. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-100/README.md +202 -0
  5. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-100/adapter_config.json +31 -0
  6. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-100/trainer_state.json +183 -0
  7. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-110/README.md +202 -0
  8. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-110/adapter_config.json +31 -0
  9. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-110/trainer_state.json +198 -0
  10. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-120/README.md +202 -0
  11. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-120/adapter_config.json +31 -0
  12. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-120/trainer_state.json +213 -0
  13. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-130/README.md +202 -0
  14. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-130/adapter_config.json +31 -0
  15. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-130/trainer_state.json +228 -0
  16. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-140/README.md +202 -0
  17. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-140/adapter_config.json +31 -0
  18. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-140/trainer_state.json +243 -0
  19. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150/README.md +202 -0
  20. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150/adapter_config.json +31 -0
  21. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150/trainer_state.json +258 -0
  22. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-160/README.md +202 -0
  23. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-160/adapter_config.json +31 -0
  24. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-20/README.md +202 -0
  25. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-20/adapter_config.json +31 -0
  26. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-20/trainer_state.json +63 -0
  27. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-30/README.md +202 -0
  28. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-30/adapter_config.json +31 -0
  29. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-30/trainer_state.json +78 -0
  30. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-40/README.md +202 -0
  31. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-40/adapter_config.json +31 -0
  32. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-40/trainer_state.json +93 -0
  33. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-50/README.md +202 -0
  34. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-50/adapter_config.json +31 -0
  35. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-50/trainer_state.json +108 -0
  36. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-60/README.md +202 -0
  37. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-60/adapter_config.json +31 -0
  38. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-60/trainer_state.json +123 -0
  39. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-70/README.md +202 -0
  40. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-70/adapter_config.json +31 -0
  41. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-70/trainer_state.json +138 -0
  42. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-80/README.md +202 -0
  43. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-80/adapter_config.json +31 -0
  44. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-80/trainer_state.json +153 -0
  45. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-90/README.md +202 -0
  46. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-90/adapter_config.json +31 -0
  47. output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-90/trainer_state.json +168 -0
  48. output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-640/rng_state.pth +3 -0
  49. output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-130/scheduler.pt +3 -0
  50. output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-640/scheduler.pt +3 -0
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-10/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-10/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-10/trainer_state.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.556234359741211,
3
+ "best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-10",
4
+ "epoch": 0.13333333333333333,
5
+ "eval_steps": 10,
6
+ "global_step": 10,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.4347652792930603,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 2.4954,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 2.556234359741211,
21
+ "eval_runtime": 43.818,
22
+ "eval_samples_per_second": 22.822,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ }
26
+ ],
27
+ "logging_steps": 10,
28
+ "max_steps": 675,
29
+ "num_input_tokens_seen": 0,
30
+ "num_train_epochs": 9,
31
+ "save_steps": 10,
32
+ "stateful_callbacks": {
33
+ "TrainerControl": {
34
+ "args": {
35
+ "should_epoch_stop": false,
36
+ "should_evaluate": false,
37
+ "should_log": false,
38
+ "should_save": true,
39
+ "should_training_stop": false
40
+ },
41
+ "attributes": {}
42
+ }
43
+ },
44
+ "total_flos": 1638607198617600.0,
45
+ "train_batch_size": 8,
46
+ "trial_name": null,
47
+ "trial_params": null
48
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-100/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-100/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-100/trainer_state.json ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.5368435382843018,
3
+ "best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-80",
4
+ "epoch": 1.3333333333333333,
5
+ "eval_steps": 10,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.4347652792930603,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 2.4954,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 2.556234359741211,
21
+ "eval_runtime": 43.818,
22
+ "eval_samples_per_second": 22.822,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.40230727195739746,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 2.5574,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 2.552377462387085,
36
+ "eval_runtime": 43.8488,
37
+ "eval_samples_per_second": 22.806,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3980488181114197,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 2.4669,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 2.549164056777954,
51
+ "eval_runtime": 43.8389,
52
+ "eval_samples_per_second": 22.811,
53
+ "eval_steps_per_second": 2.851,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.4006142020225525,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 2.5199,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 2.546046495437622,
66
+ "eval_runtime": 43.8456,
67
+ "eval_samples_per_second": 22.807,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.4202616512775421,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 2.5619,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 2.5431504249572754,
81
+ "eval_runtime": 43.8379,
82
+ "eval_samples_per_second": 22.811,
83
+ "eval_steps_per_second": 2.851,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3871513307094574,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 2.5057,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 2.5413730144500732,
96
+ "eval_runtime": 43.8646,
97
+ "eval_samples_per_second": 22.797,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.36390039324760437,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 2.4606,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 2.5389301776885986,
111
+ "eval_runtime": 43.8837,
112
+ "eval_samples_per_second": 22.788,
113
+ "eval_steps_per_second": 2.848,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.4081075191497803,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 2.4696,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 2.5368435382843018,
126
+ "eval_runtime": 43.8696,
127
+ "eval_samples_per_second": 22.795,
128
+ "eval_steps_per_second": 2.849,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.5448070764541626,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 2.4258,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 2.538212776184082,
141
+ "eval_runtime": 43.8585,
142
+ "eval_samples_per_second": 22.801,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.7155500650405884,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 2.4865,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 2.540060043334961,
156
+ "eval_runtime": 43.8337,
157
+ "eval_samples_per_second": 22.813,
158
+ "eval_steps_per_second": 2.852,
159
+ "step": 100
160
+ }
161
+ ],
162
+ "logging_steps": 10,
163
+ "max_steps": 675,
164
+ "num_input_tokens_seen": 0,
165
+ "num_train_epochs": 9,
166
+ "save_steps": 10,
167
+ "stateful_callbacks": {
168
+ "TrainerControl": {
169
+ "args": {
170
+ "should_epoch_stop": false,
171
+ "should_evaluate": false,
172
+ "should_log": false,
173
+ "should_save": true,
174
+ "should_training_stop": false
175
+ },
176
+ "attributes": {}
177
+ }
178
+ },
179
+ "total_flos": 1.6386071986176e+16,
180
+ "train_batch_size": 8,
181
+ "trial_name": null,
182
+ "trial_params": null
183
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-110/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-110/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-110/trainer_state.json ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.5368435382843018,
3
+ "best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-80",
4
+ "epoch": 1.4666666666666668,
5
+ "eval_steps": 10,
6
+ "global_step": 110,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.4347652792930603,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 2.4954,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 2.556234359741211,
21
+ "eval_runtime": 43.818,
22
+ "eval_samples_per_second": 22.822,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.40230727195739746,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 2.5574,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 2.552377462387085,
36
+ "eval_runtime": 43.8488,
37
+ "eval_samples_per_second": 22.806,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3980488181114197,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 2.4669,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 2.549164056777954,
51
+ "eval_runtime": 43.8389,
52
+ "eval_samples_per_second": 22.811,
53
+ "eval_steps_per_second": 2.851,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.4006142020225525,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 2.5199,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 2.546046495437622,
66
+ "eval_runtime": 43.8456,
67
+ "eval_samples_per_second": 22.807,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.4202616512775421,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 2.5619,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 2.5431504249572754,
81
+ "eval_runtime": 43.8379,
82
+ "eval_samples_per_second": 22.811,
83
+ "eval_steps_per_second": 2.851,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3871513307094574,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 2.5057,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 2.5413730144500732,
96
+ "eval_runtime": 43.8646,
97
+ "eval_samples_per_second": 22.797,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.36390039324760437,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 2.4606,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 2.5389301776885986,
111
+ "eval_runtime": 43.8837,
112
+ "eval_samples_per_second": 22.788,
113
+ "eval_steps_per_second": 2.848,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.4081075191497803,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 2.4696,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 2.5368435382843018,
126
+ "eval_runtime": 43.8696,
127
+ "eval_samples_per_second": 22.795,
128
+ "eval_steps_per_second": 2.849,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.5448070764541626,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 2.4258,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 2.538212776184082,
141
+ "eval_runtime": 43.8585,
142
+ "eval_samples_per_second": 22.801,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.7155500650405884,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 2.4865,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 2.540060043334961,
156
+ "eval_runtime": 43.8337,
157
+ "eval_samples_per_second": 22.813,
158
+ "eval_steps_per_second": 2.852,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.7326843738555908,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 2.4391,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 2.5385019779205322,
171
+ "eval_runtime": 43.8789,
172
+ "eval_samples_per_second": 22.79,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ }
176
+ ],
177
+ "logging_steps": 10,
178
+ "max_steps": 675,
179
+ "num_input_tokens_seen": 0,
180
+ "num_train_epochs": 9,
181
+ "save_steps": 10,
182
+ "stateful_callbacks": {
183
+ "TrainerControl": {
184
+ "args": {
185
+ "should_epoch_stop": false,
186
+ "should_evaluate": false,
187
+ "should_log": false,
188
+ "should_save": true,
189
+ "should_training_stop": false
190
+ },
191
+ "attributes": {}
192
+ }
193
+ },
194
+ "total_flos": 1.80246791847936e+16,
195
+ "train_batch_size": 8,
196
+ "trial_name": null,
197
+ "trial_params": null
198
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-120/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-120/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-120/trainer_state.json ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.5356342792510986,
3
+ "best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-120",
4
+ "epoch": 1.6,
5
+ "eval_steps": 10,
6
+ "global_step": 120,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.4347652792930603,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 2.4954,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 2.556234359741211,
21
+ "eval_runtime": 43.818,
22
+ "eval_samples_per_second": 22.822,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.40230727195739746,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 2.5574,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 2.552377462387085,
36
+ "eval_runtime": 43.8488,
37
+ "eval_samples_per_second": 22.806,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3980488181114197,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 2.4669,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 2.549164056777954,
51
+ "eval_runtime": 43.8389,
52
+ "eval_samples_per_second": 22.811,
53
+ "eval_steps_per_second": 2.851,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.4006142020225525,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 2.5199,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 2.546046495437622,
66
+ "eval_runtime": 43.8456,
67
+ "eval_samples_per_second": 22.807,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.4202616512775421,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 2.5619,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 2.5431504249572754,
81
+ "eval_runtime": 43.8379,
82
+ "eval_samples_per_second": 22.811,
83
+ "eval_steps_per_second": 2.851,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3871513307094574,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 2.5057,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 2.5413730144500732,
96
+ "eval_runtime": 43.8646,
97
+ "eval_samples_per_second": 22.797,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.36390039324760437,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 2.4606,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 2.5389301776885986,
111
+ "eval_runtime": 43.8837,
112
+ "eval_samples_per_second": 22.788,
113
+ "eval_steps_per_second": 2.848,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.4081075191497803,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 2.4696,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 2.5368435382843018,
126
+ "eval_runtime": 43.8696,
127
+ "eval_samples_per_second": 22.795,
128
+ "eval_steps_per_second": 2.849,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.5448070764541626,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 2.4258,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 2.538212776184082,
141
+ "eval_runtime": 43.8585,
142
+ "eval_samples_per_second": 22.801,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.7155500650405884,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 2.4865,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 2.540060043334961,
156
+ "eval_runtime": 43.8337,
157
+ "eval_samples_per_second": 22.813,
158
+ "eval_steps_per_second": 2.852,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.7326843738555908,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 2.4391,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 2.5385019779205322,
171
+ "eval_runtime": 43.8789,
172
+ "eval_samples_per_second": 22.79,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.8026068806648254,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 2.4001,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 2.5356342792510986,
186
+ "eval_runtime": 43.8699,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ }
191
+ ],
192
+ "logging_steps": 10,
193
+ "max_steps": 675,
194
+ "num_input_tokens_seen": 0,
195
+ "num_train_epochs": 9,
196
+ "save_steps": 10,
197
+ "stateful_callbacks": {
198
+ "TrainerControl": {
199
+ "args": {
200
+ "should_epoch_stop": false,
201
+ "should_evaluate": false,
202
+ "should_log": false,
203
+ "should_save": true,
204
+ "should_training_stop": false
205
+ },
206
+ "attributes": {}
207
+ }
208
+ },
209
+ "total_flos": 1.96632863834112e+16,
210
+ "train_batch_size": 8,
211
+ "trial_name": null,
212
+ "trial_params": null
213
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-130/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-130/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-130/trainer_state.json ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.5329699516296387,
3
+ "best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-130",
4
+ "epoch": 1.7333333333333334,
5
+ "eval_steps": 10,
6
+ "global_step": 130,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.4347652792930603,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 2.4954,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 2.556234359741211,
21
+ "eval_runtime": 43.818,
22
+ "eval_samples_per_second": 22.822,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.40230727195739746,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 2.5574,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 2.552377462387085,
36
+ "eval_runtime": 43.8488,
37
+ "eval_samples_per_second": 22.806,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3980488181114197,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 2.4669,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 2.549164056777954,
51
+ "eval_runtime": 43.8389,
52
+ "eval_samples_per_second": 22.811,
53
+ "eval_steps_per_second": 2.851,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.4006142020225525,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 2.5199,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 2.546046495437622,
66
+ "eval_runtime": 43.8456,
67
+ "eval_samples_per_second": 22.807,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.4202616512775421,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 2.5619,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 2.5431504249572754,
81
+ "eval_runtime": 43.8379,
82
+ "eval_samples_per_second": 22.811,
83
+ "eval_steps_per_second": 2.851,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3871513307094574,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 2.5057,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 2.5413730144500732,
96
+ "eval_runtime": 43.8646,
97
+ "eval_samples_per_second": 22.797,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.36390039324760437,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 2.4606,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 2.5389301776885986,
111
+ "eval_runtime": 43.8837,
112
+ "eval_samples_per_second": 22.788,
113
+ "eval_steps_per_second": 2.848,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.4081075191497803,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 2.4696,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 2.5368435382843018,
126
+ "eval_runtime": 43.8696,
127
+ "eval_samples_per_second": 22.795,
128
+ "eval_steps_per_second": 2.849,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.5448070764541626,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 2.4258,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 2.538212776184082,
141
+ "eval_runtime": 43.8585,
142
+ "eval_samples_per_second": 22.801,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.7155500650405884,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 2.4865,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 2.540060043334961,
156
+ "eval_runtime": 43.8337,
157
+ "eval_samples_per_second": 22.813,
158
+ "eval_steps_per_second": 2.852,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.7326843738555908,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 2.4391,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 2.5385019779205322,
171
+ "eval_runtime": 43.8789,
172
+ "eval_samples_per_second": 22.79,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.8026068806648254,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 2.4001,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 2.5356342792510986,
186
+ "eval_runtime": 43.8699,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.8492558598518372,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 2.387,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 2.5329699516296387,
201
+ "eval_runtime": 43.8654,
202
+ "eval_samples_per_second": 22.797,
203
+ "eval_steps_per_second": 2.85,
204
+ "step": 130
205
+ }
206
+ ],
207
+ "logging_steps": 10,
208
+ "max_steps": 675,
209
+ "num_input_tokens_seen": 0,
210
+ "num_train_epochs": 9,
211
+ "save_steps": 10,
212
+ "stateful_callbacks": {
213
+ "TrainerControl": {
214
+ "args": {
215
+ "should_epoch_stop": false,
216
+ "should_evaluate": false,
217
+ "should_log": false,
218
+ "should_save": true,
219
+ "should_training_stop": false
220
+ },
221
+ "attributes": {}
222
+ }
223
+ },
224
+ "total_flos": 2.13018935820288e+16,
225
+ "train_batch_size": 8,
226
+ "trial_name": null,
227
+ "trial_params": null
228
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-140/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-140/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-140/trainer_state.json ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.5319204330444336,
3
+ "best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-140",
4
+ "epoch": 1.8666666666666667,
5
+ "eval_steps": 10,
6
+ "global_step": 140,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.4347652792930603,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 2.4954,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 2.556234359741211,
21
+ "eval_runtime": 43.818,
22
+ "eval_samples_per_second": 22.822,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.40230727195739746,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 2.5574,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 2.552377462387085,
36
+ "eval_runtime": 43.8488,
37
+ "eval_samples_per_second": 22.806,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3980488181114197,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 2.4669,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 2.549164056777954,
51
+ "eval_runtime": 43.8389,
52
+ "eval_samples_per_second": 22.811,
53
+ "eval_steps_per_second": 2.851,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.4006142020225525,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 2.5199,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 2.546046495437622,
66
+ "eval_runtime": 43.8456,
67
+ "eval_samples_per_second": 22.807,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.4202616512775421,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 2.5619,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 2.5431504249572754,
81
+ "eval_runtime": 43.8379,
82
+ "eval_samples_per_second": 22.811,
83
+ "eval_steps_per_second": 2.851,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3871513307094574,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 2.5057,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 2.5413730144500732,
96
+ "eval_runtime": 43.8646,
97
+ "eval_samples_per_second": 22.797,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.36390039324760437,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 2.4606,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 2.5389301776885986,
111
+ "eval_runtime": 43.8837,
112
+ "eval_samples_per_second": 22.788,
113
+ "eval_steps_per_second": 2.848,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.4081075191497803,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 2.4696,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 2.5368435382843018,
126
+ "eval_runtime": 43.8696,
127
+ "eval_samples_per_second": 22.795,
128
+ "eval_steps_per_second": 2.849,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.5448070764541626,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 2.4258,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 2.538212776184082,
141
+ "eval_runtime": 43.8585,
142
+ "eval_samples_per_second": 22.801,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.7155500650405884,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 2.4865,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 2.540060043334961,
156
+ "eval_runtime": 43.8337,
157
+ "eval_samples_per_second": 22.813,
158
+ "eval_steps_per_second": 2.852,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.7326843738555908,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 2.4391,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 2.5385019779205322,
171
+ "eval_runtime": 43.8789,
172
+ "eval_samples_per_second": 22.79,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.8026068806648254,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 2.4001,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 2.5356342792510986,
186
+ "eval_runtime": 43.8699,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.8492558598518372,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 2.387,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 2.5329699516296387,
201
+ "eval_runtime": 43.8654,
202
+ "eval_samples_per_second": 22.797,
203
+ "eval_steps_per_second": 2.85,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 1.1200364828109741,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 2.3817,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 2.5319204330444336,
216
+ "eval_runtime": 43.847,
217
+ "eval_samples_per_second": 22.807,
218
+ "eval_steps_per_second": 2.851,
219
+ "step": 140
220
+ }
221
+ ],
222
+ "logging_steps": 10,
223
+ "max_steps": 675,
224
+ "num_input_tokens_seen": 0,
225
+ "num_train_epochs": 9,
226
+ "save_steps": 10,
227
+ "stateful_callbacks": {
228
+ "TrainerControl": {
229
+ "args": {
230
+ "should_epoch_stop": false,
231
+ "should_evaluate": false,
232
+ "should_log": false,
233
+ "should_save": true,
234
+ "should_training_stop": false
235
+ },
236
+ "attributes": {}
237
+ }
238
+ },
239
+ "total_flos": 2.29405007806464e+16,
240
+ "train_batch_size": 8,
241
+ "trial_name": null,
242
+ "trial_params": null
243
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150/trainer_state.json ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.5317564010620117,
3
+ "best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-150",
4
+ "epoch": 2.0,
5
+ "eval_steps": 10,
6
+ "global_step": 150,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.4347652792930603,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 2.4954,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 2.556234359741211,
21
+ "eval_runtime": 43.818,
22
+ "eval_samples_per_second": 22.822,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.40230727195739746,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 2.5574,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 2.552377462387085,
36
+ "eval_runtime": 43.8488,
37
+ "eval_samples_per_second": 22.806,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3980488181114197,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 2.4669,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 2.549164056777954,
51
+ "eval_runtime": 43.8389,
52
+ "eval_samples_per_second": 22.811,
53
+ "eval_steps_per_second": 2.851,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.4006142020225525,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 2.5199,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 2.546046495437622,
66
+ "eval_runtime": 43.8456,
67
+ "eval_samples_per_second": 22.807,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.4202616512775421,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 2.5619,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 2.5431504249572754,
81
+ "eval_runtime": 43.8379,
82
+ "eval_samples_per_second": 22.811,
83
+ "eval_steps_per_second": 2.851,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3871513307094574,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 2.5057,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 2.5413730144500732,
96
+ "eval_runtime": 43.8646,
97
+ "eval_samples_per_second": 22.797,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.36390039324760437,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 2.4606,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 2.5389301776885986,
111
+ "eval_runtime": 43.8837,
112
+ "eval_samples_per_second": 22.788,
113
+ "eval_steps_per_second": 2.848,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.4081075191497803,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 2.4696,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 2.5368435382843018,
126
+ "eval_runtime": 43.8696,
127
+ "eval_samples_per_second": 22.795,
128
+ "eval_steps_per_second": 2.849,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.5448070764541626,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 2.4258,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 2.538212776184082,
141
+ "eval_runtime": 43.8585,
142
+ "eval_samples_per_second": 22.801,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ },
146
+ {
147
+ "epoch": 1.3333333333333333,
148
+ "grad_norm": 0.7155500650405884,
149
+ "learning_rate": 6.814814814814815e-05,
150
+ "loss": 2.4865,
151
+ "step": 100
152
+ },
153
+ {
154
+ "epoch": 1.3333333333333333,
155
+ "eval_loss": 2.540060043334961,
156
+ "eval_runtime": 43.8337,
157
+ "eval_samples_per_second": 22.813,
158
+ "eval_steps_per_second": 2.852,
159
+ "step": 100
160
+ },
161
+ {
162
+ "epoch": 1.4666666666666668,
163
+ "grad_norm": 0.7326843738555908,
164
+ "learning_rate": 6.696296296296296e-05,
165
+ "loss": 2.4391,
166
+ "step": 110
167
+ },
168
+ {
169
+ "epoch": 1.4666666666666668,
170
+ "eval_loss": 2.5385019779205322,
171
+ "eval_runtime": 43.8789,
172
+ "eval_samples_per_second": 22.79,
173
+ "eval_steps_per_second": 2.849,
174
+ "step": 110
175
+ },
176
+ {
177
+ "epoch": 1.6,
178
+ "grad_norm": 0.8026068806648254,
179
+ "learning_rate": 6.577777777777777e-05,
180
+ "loss": 2.4001,
181
+ "step": 120
182
+ },
183
+ {
184
+ "epoch": 1.6,
185
+ "eval_loss": 2.5356342792510986,
186
+ "eval_runtime": 43.8699,
187
+ "eval_samples_per_second": 22.795,
188
+ "eval_steps_per_second": 2.849,
189
+ "step": 120
190
+ },
191
+ {
192
+ "epoch": 1.7333333333333334,
193
+ "grad_norm": 0.8492558598518372,
194
+ "learning_rate": 6.45925925925926e-05,
195
+ "loss": 2.387,
196
+ "step": 130
197
+ },
198
+ {
199
+ "epoch": 1.7333333333333334,
200
+ "eval_loss": 2.5329699516296387,
201
+ "eval_runtime": 43.8654,
202
+ "eval_samples_per_second": 22.797,
203
+ "eval_steps_per_second": 2.85,
204
+ "step": 130
205
+ },
206
+ {
207
+ "epoch": 1.8666666666666667,
208
+ "grad_norm": 1.1200364828109741,
209
+ "learning_rate": 6.340740740740741e-05,
210
+ "loss": 2.3817,
211
+ "step": 140
212
+ },
213
+ {
214
+ "epoch": 1.8666666666666667,
215
+ "eval_loss": 2.5319204330444336,
216
+ "eval_runtime": 43.847,
217
+ "eval_samples_per_second": 22.807,
218
+ "eval_steps_per_second": 2.851,
219
+ "step": 140
220
+ },
221
+ {
222
+ "epoch": 2.0,
223
+ "grad_norm": 0.9766451120376587,
224
+ "learning_rate": 6.222222222222223e-05,
225
+ "loss": 2.4193,
226
+ "step": 150
227
+ },
228
+ {
229
+ "epoch": 2.0,
230
+ "eval_loss": 2.5317564010620117,
231
+ "eval_runtime": 43.8504,
232
+ "eval_samples_per_second": 22.805,
233
+ "eval_steps_per_second": 2.851,
234
+ "step": 150
235
+ }
236
+ ],
237
+ "logging_steps": 10,
238
+ "max_steps": 675,
239
+ "num_input_tokens_seen": 0,
240
+ "num_train_epochs": 9,
241
+ "save_steps": 10,
242
+ "stateful_callbacks": {
243
+ "TrainerControl": {
244
+ "args": {
245
+ "should_epoch_stop": false,
246
+ "should_evaluate": false,
247
+ "should_log": false,
248
+ "should_save": true,
249
+ "should_training_stop": false
250
+ },
251
+ "attributes": {}
252
+ }
253
+ },
254
+ "total_flos": 2.4579107979264e+16,
255
+ "train_batch_size": 8,
256
+ "trial_name": null,
257
+ "trial_params": null
258
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-160/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-160/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-20/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-20/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-20/trainer_state.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.552377462387085,
3
+ "best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-20",
4
+ "epoch": 0.26666666666666666,
5
+ "eval_steps": 10,
6
+ "global_step": 20,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.4347652792930603,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 2.4954,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 2.556234359741211,
21
+ "eval_runtime": 43.818,
22
+ "eval_samples_per_second": 22.822,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.40230727195739746,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 2.5574,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 2.552377462387085,
36
+ "eval_runtime": 43.8488,
37
+ "eval_samples_per_second": 22.806,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ }
41
+ ],
42
+ "logging_steps": 10,
43
+ "max_steps": 675,
44
+ "num_input_tokens_seen": 0,
45
+ "num_train_epochs": 9,
46
+ "save_steps": 10,
47
+ "stateful_callbacks": {
48
+ "TrainerControl": {
49
+ "args": {
50
+ "should_epoch_stop": false,
51
+ "should_evaluate": false,
52
+ "should_log": false,
53
+ "should_save": true,
54
+ "should_training_stop": false
55
+ },
56
+ "attributes": {}
57
+ }
58
+ },
59
+ "total_flos": 3277214397235200.0,
60
+ "train_batch_size": 8,
61
+ "trial_name": null,
62
+ "trial_params": null
63
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-30/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-30/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-30/trainer_state.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.549164056777954,
3
+ "best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-30",
4
+ "epoch": 0.4,
5
+ "eval_steps": 10,
6
+ "global_step": 30,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.4347652792930603,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 2.4954,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 2.556234359741211,
21
+ "eval_runtime": 43.818,
22
+ "eval_samples_per_second": 22.822,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.40230727195739746,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 2.5574,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 2.552377462387085,
36
+ "eval_runtime": 43.8488,
37
+ "eval_samples_per_second": 22.806,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3980488181114197,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 2.4669,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 2.549164056777954,
51
+ "eval_runtime": 43.8389,
52
+ "eval_samples_per_second": 22.811,
53
+ "eval_steps_per_second": 2.851,
54
+ "step": 30
55
+ }
56
+ ],
57
+ "logging_steps": 10,
58
+ "max_steps": 675,
59
+ "num_input_tokens_seen": 0,
60
+ "num_train_epochs": 9,
61
+ "save_steps": 10,
62
+ "stateful_callbacks": {
63
+ "TrainerControl": {
64
+ "args": {
65
+ "should_epoch_stop": false,
66
+ "should_evaluate": false,
67
+ "should_log": false,
68
+ "should_save": true,
69
+ "should_training_stop": false
70
+ },
71
+ "attributes": {}
72
+ }
73
+ },
74
+ "total_flos": 4915821595852800.0,
75
+ "train_batch_size": 8,
76
+ "trial_name": null,
77
+ "trial_params": null
78
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-40/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-40/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-40/trainer_state.json ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.546046495437622,
3
+ "best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-40",
4
+ "epoch": 0.5333333333333333,
5
+ "eval_steps": 10,
6
+ "global_step": 40,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.4347652792930603,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 2.4954,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 2.556234359741211,
21
+ "eval_runtime": 43.818,
22
+ "eval_samples_per_second": 22.822,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.40230727195739746,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 2.5574,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 2.552377462387085,
36
+ "eval_runtime": 43.8488,
37
+ "eval_samples_per_second": 22.806,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3980488181114197,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 2.4669,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 2.549164056777954,
51
+ "eval_runtime": 43.8389,
52
+ "eval_samples_per_second": 22.811,
53
+ "eval_steps_per_second": 2.851,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.4006142020225525,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 2.5199,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 2.546046495437622,
66
+ "eval_runtime": 43.8456,
67
+ "eval_samples_per_second": 22.807,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ }
71
+ ],
72
+ "logging_steps": 10,
73
+ "max_steps": 675,
74
+ "num_input_tokens_seen": 0,
75
+ "num_train_epochs": 9,
76
+ "save_steps": 10,
77
+ "stateful_callbacks": {
78
+ "TrainerControl": {
79
+ "args": {
80
+ "should_epoch_stop": false,
81
+ "should_evaluate": false,
82
+ "should_log": false,
83
+ "should_save": true,
84
+ "should_training_stop": false
85
+ },
86
+ "attributes": {}
87
+ }
88
+ },
89
+ "total_flos": 6554428794470400.0,
90
+ "train_batch_size": 8,
91
+ "trial_name": null,
92
+ "trial_params": null
93
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-50/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-50/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-50/trainer_state.json ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.5431504249572754,
3
+ "best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-50",
4
+ "epoch": 0.6666666666666666,
5
+ "eval_steps": 10,
6
+ "global_step": 50,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.4347652792930603,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 2.4954,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 2.556234359741211,
21
+ "eval_runtime": 43.818,
22
+ "eval_samples_per_second": 22.822,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.40230727195739746,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 2.5574,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 2.552377462387085,
36
+ "eval_runtime": 43.8488,
37
+ "eval_samples_per_second": 22.806,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3980488181114197,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 2.4669,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 2.549164056777954,
51
+ "eval_runtime": 43.8389,
52
+ "eval_samples_per_second": 22.811,
53
+ "eval_steps_per_second": 2.851,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.4006142020225525,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 2.5199,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 2.546046495437622,
66
+ "eval_runtime": 43.8456,
67
+ "eval_samples_per_second": 22.807,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.4202616512775421,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 2.5619,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 2.5431504249572754,
81
+ "eval_runtime": 43.8379,
82
+ "eval_samples_per_second": 22.811,
83
+ "eval_steps_per_second": 2.851,
84
+ "step": 50
85
+ }
86
+ ],
87
+ "logging_steps": 10,
88
+ "max_steps": 675,
89
+ "num_input_tokens_seen": 0,
90
+ "num_train_epochs": 9,
91
+ "save_steps": 10,
92
+ "stateful_callbacks": {
93
+ "TrainerControl": {
94
+ "args": {
95
+ "should_epoch_stop": false,
96
+ "should_evaluate": false,
97
+ "should_log": false,
98
+ "should_save": true,
99
+ "should_training_stop": false
100
+ },
101
+ "attributes": {}
102
+ }
103
+ },
104
+ "total_flos": 8193035993088000.0,
105
+ "train_batch_size": 8,
106
+ "trial_name": null,
107
+ "trial_params": null
108
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-60/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-60/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-60/trainer_state.json ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.5413730144500732,
3
+ "best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-60",
4
+ "epoch": 0.8,
5
+ "eval_steps": 10,
6
+ "global_step": 60,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.4347652792930603,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 2.4954,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 2.556234359741211,
21
+ "eval_runtime": 43.818,
22
+ "eval_samples_per_second": 22.822,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.40230727195739746,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 2.5574,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 2.552377462387085,
36
+ "eval_runtime": 43.8488,
37
+ "eval_samples_per_second": 22.806,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3980488181114197,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 2.4669,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 2.549164056777954,
51
+ "eval_runtime": 43.8389,
52
+ "eval_samples_per_second": 22.811,
53
+ "eval_steps_per_second": 2.851,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.4006142020225525,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 2.5199,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 2.546046495437622,
66
+ "eval_runtime": 43.8456,
67
+ "eval_samples_per_second": 22.807,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.4202616512775421,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 2.5619,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 2.5431504249572754,
81
+ "eval_runtime": 43.8379,
82
+ "eval_samples_per_second": 22.811,
83
+ "eval_steps_per_second": 2.851,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3871513307094574,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 2.5057,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 2.5413730144500732,
96
+ "eval_runtime": 43.8646,
97
+ "eval_samples_per_second": 22.797,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ }
101
+ ],
102
+ "logging_steps": 10,
103
+ "max_steps": 675,
104
+ "num_input_tokens_seen": 0,
105
+ "num_train_epochs": 9,
106
+ "save_steps": 10,
107
+ "stateful_callbacks": {
108
+ "TrainerControl": {
109
+ "args": {
110
+ "should_epoch_stop": false,
111
+ "should_evaluate": false,
112
+ "should_log": false,
113
+ "should_save": true,
114
+ "should_training_stop": false
115
+ },
116
+ "attributes": {}
117
+ }
118
+ },
119
+ "total_flos": 9831643191705600.0,
120
+ "train_batch_size": 8,
121
+ "trial_name": null,
122
+ "trial_params": null
123
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-70/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-70/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-70/trainer_state.json ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.5389301776885986,
3
+ "best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-70",
4
+ "epoch": 0.9333333333333333,
5
+ "eval_steps": 10,
6
+ "global_step": 70,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.4347652792930603,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 2.4954,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 2.556234359741211,
21
+ "eval_runtime": 43.818,
22
+ "eval_samples_per_second": 22.822,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.40230727195739746,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 2.5574,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 2.552377462387085,
36
+ "eval_runtime": 43.8488,
37
+ "eval_samples_per_second": 22.806,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3980488181114197,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 2.4669,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 2.549164056777954,
51
+ "eval_runtime": 43.8389,
52
+ "eval_samples_per_second": 22.811,
53
+ "eval_steps_per_second": 2.851,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.4006142020225525,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 2.5199,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 2.546046495437622,
66
+ "eval_runtime": 43.8456,
67
+ "eval_samples_per_second": 22.807,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.4202616512775421,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 2.5619,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 2.5431504249572754,
81
+ "eval_runtime": 43.8379,
82
+ "eval_samples_per_second": 22.811,
83
+ "eval_steps_per_second": 2.851,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3871513307094574,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 2.5057,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 2.5413730144500732,
96
+ "eval_runtime": 43.8646,
97
+ "eval_samples_per_second": 22.797,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.36390039324760437,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 2.4606,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 2.5389301776885986,
111
+ "eval_runtime": 43.8837,
112
+ "eval_samples_per_second": 22.788,
113
+ "eval_steps_per_second": 2.848,
114
+ "step": 70
115
+ }
116
+ ],
117
+ "logging_steps": 10,
118
+ "max_steps": 675,
119
+ "num_input_tokens_seen": 0,
120
+ "num_train_epochs": 9,
121
+ "save_steps": 10,
122
+ "stateful_callbacks": {
123
+ "TrainerControl": {
124
+ "args": {
125
+ "should_epoch_stop": false,
126
+ "should_evaluate": false,
127
+ "should_log": false,
128
+ "should_save": true,
129
+ "should_training_stop": false
130
+ },
131
+ "attributes": {}
132
+ }
133
+ },
134
+ "total_flos": 1.14702503903232e+16,
135
+ "train_batch_size": 8,
136
+ "trial_name": null,
137
+ "trial_params": null
138
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-80/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-80/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-80/trainer_state.json ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.5368435382843018,
3
+ "best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-80",
4
+ "epoch": 1.0666666666666667,
5
+ "eval_steps": 10,
6
+ "global_step": 80,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.4347652792930603,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 2.4954,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 2.556234359741211,
21
+ "eval_runtime": 43.818,
22
+ "eval_samples_per_second": 22.822,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.40230727195739746,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 2.5574,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 2.552377462387085,
36
+ "eval_runtime": 43.8488,
37
+ "eval_samples_per_second": 22.806,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3980488181114197,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 2.4669,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 2.549164056777954,
51
+ "eval_runtime": 43.8389,
52
+ "eval_samples_per_second": 22.811,
53
+ "eval_steps_per_second": 2.851,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.4006142020225525,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 2.5199,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 2.546046495437622,
66
+ "eval_runtime": 43.8456,
67
+ "eval_samples_per_second": 22.807,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.4202616512775421,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 2.5619,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 2.5431504249572754,
81
+ "eval_runtime": 43.8379,
82
+ "eval_samples_per_second": 22.811,
83
+ "eval_steps_per_second": 2.851,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3871513307094574,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 2.5057,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 2.5413730144500732,
96
+ "eval_runtime": 43.8646,
97
+ "eval_samples_per_second": 22.797,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.36390039324760437,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 2.4606,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 2.5389301776885986,
111
+ "eval_runtime": 43.8837,
112
+ "eval_samples_per_second": 22.788,
113
+ "eval_steps_per_second": 2.848,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.4081075191497803,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 2.4696,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 2.5368435382843018,
126
+ "eval_runtime": 43.8696,
127
+ "eval_samples_per_second": 22.795,
128
+ "eval_steps_per_second": 2.849,
129
+ "step": 80
130
+ }
131
+ ],
132
+ "logging_steps": 10,
133
+ "max_steps": 675,
134
+ "num_input_tokens_seen": 0,
135
+ "num_train_epochs": 9,
136
+ "save_steps": 10,
137
+ "stateful_callbacks": {
138
+ "TrainerControl": {
139
+ "args": {
140
+ "should_epoch_stop": false,
141
+ "should_evaluate": false,
142
+ "should_log": false,
143
+ "should_save": true,
144
+ "should_training_stop": false
145
+ },
146
+ "attributes": {}
147
+ }
148
+ },
149
+ "total_flos": 1.31088575889408e+16,
150
+ "train_batch_size": 8,
151
+ "trial_name": null,
152
+ "trial_params": null
153
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-90/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: /workspace/pythia-6_9b
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-90/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/workspace/pythia-6_9b",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.1,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 8,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense_h_to_4h",
24
+ "query_key_value",
25
+ "dense",
26
+ "dense_4h_to_h"
27
+ ],
28
+ "task_type": "CAUSAL_LM",
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-90/trainer_state.json ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.5368435382843018,
3
+ "best_model_checkpoint": "./output_ft_more_layers_bookcorpus2_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-bookcorpus2-8e-05/checkpoint-80",
4
+ "epoch": 1.2,
5
+ "eval_steps": 10,
6
+ "global_step": 90,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.13333333333333333,
13
+ "grad_norm": 0.4347652792930603,
14
+ "learning_rate": 7.881481481481482e-05,
15
+ "loss": 2.4954,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.13333333333333333,
20
+ "eval_loss": 2.556234359741211,
21
+ "eval_runtime": 43.818,
22
+ "eval_samples_per_second": 22.822,
23
+ "eval_steps_per_second": 2.853,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.26666666666666666,
28
+ "grad_norm": 0.40230727195739746,
29
+ "learning_rate": 7.762962962962963e-05,
30
+ "loss": 2.5574,
31
+ "step": 20
32
+ },
33
+ {
34
+ "epoch": 0.26666666666666666,
35
+ "eval_loss": 2.552377462387085,
36
+ "eval_runtime": 43.8488,
37
+ "eval_samples_per_second": 22.806,
38
+ "eval_steps_per_second": 2.851,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.4,
43
+ "grad_norm": 0.3980488181114197,
44
+ "learning_rate": 7.644444444444445e-05,
45
+ "loss": 2.4669,
46
+ "step": 30
47
+ },
48
+ {
49
+ "epoch": 0.4,
50
+ "eval_loss": 2.549164056777954,
51
+ "eval_runtime": 43.8389,
52
+ "eval_samples_per_second": 22.811,
53
+ "eval_steps_per_second": 2.851,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.5333333333333333,
58
+ "grad_norm": 0.4006142020225525,
59
+ "learning_rate": 7.525925925925926e-05,
60
+ "loss": 2.5199,
61
+ "step": 40
62
+ },
63
+ {
64
+ "epoch": 0.5333333333333333,
65
+ "eval_loss": 2.546046495437622,
66
+ "eval_runtime": 43.8456,
67
+ "eval_samples_per_second": 22.807,
68
+ "eval_steps_per_second": 2.851,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.6666666666666666,
73
+ "grad_norm": 0.4202616512775421,
74
+ "learning_rate": 7.407407407407409e-05,
75
+ "loss": 2.5619,
76
+ "step": 50
77
+ },
78
+ {
79
+ "epoch": 0.6666666666666666,
80
+ "eval_loss": 2.5431504249572754,
81
+ "eval_runtime": 43.8379,
82
+ "eval_samples_per_second": 22.811,
83
+ "eval_steps_per_second": 2.851,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.8,
88
+ "grad_norm": 0.3871513307094574,
89
+ "learning_rate": 7.28888888888889e-05,
90
+ "loss": 2.5057,
91
+ "step": 60
92
+ },
93
+ {
94
+ "epoch": 0.8,
95
+ "eval_loss": 2.5413730144500732,
96
+ "eval_runtime": 43.8646,
97
+ "eval_samples_per_second": 22.797,
98
+ "eval_steps_per_second": 2.85,
99
+ "step": 60
100
+ },
101
+ {
102
+ "epoch": 0.9333333333333333,
103
+ "grad_norm": 0.36390039324760437,
104
+ "learning_rate": 7.170370370370371e-05,
105
+ "loss": 2.4606,
106
+ "step": 70
107
+ },
108
+ {
109
+ "epoch": 0.9333333333333333,
110
+ "eval_loss": 2.5389301776885986,
111
+ "eval_runtime": 43.8837,
112
+ "eval_samples_per_second": 22.788,
113
+ "eval_steps_per_second": 2.848,
114
+ "step": 70
115
+ },
116
+ {
117
+ "epoch": 1.0666666666666667,
118
+ "grad_norm": 0.4081075191497803,
119
+ "learning_rate": 7.051851851851853e-05,
120
+ "loss": 2.4696,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 1.0666666666666667,
125
+ "eval_loss": 2.5368435382843018,
126
+ "eval_runtime": 43.8696,
127
+ "eval_samples_per_second": 22.795,
128
+ "eval_steps_per_second": 2.849,
129
+ "step": 80
130
+ },
131
+ {
132
+ "epoch": 1.2,
133
+ "grad_norm": 0.5448070764541626,
134
+ "learning_rate": 6.933333333333334e-05,
135
+ "loss": 2.4258,
136
+ "step": 90
137
+ },
138
+ {
139
+ "epoch": 1.2,
140
+ "eval_loss": 2.538212776184082,
141
+ "eval_runtime": 43.8585,
142
+ "eval_samples_per_second": 22.801,
143
+ "eval_steps_per_second": 2.85,
144
+ "step": 90
145
+ }
146
+ ],
147
+ "logging_steps": 10,
148
+ "max_steps": 675,
149
+ "num_input_tokens_seen": 0,
150
+ "num_train_epochs": 9,
151
+ "save_steps": 10,
152
+ "stateful_callbacks": {
153
+ "TrainerControl": {
154
+ "args": {
155
+ "should_epoch_stop": false,
156
+ "should_evaluate": false,
157
+ "should_log": false,
158
+ "should_save": true,
159
+ "should_training_stop": false
160
+ },
161
+ "attributes": {}
162
+ }
163
+ },
164
+ "total_flos": 1.47474647875584e+16,
165
+ "train_batch_size": 8,
166
+ "trial_name": null,
167
+ "trial_params": null
168
+ }
output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-member-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-640/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0597f3b9ac321e002676eb1712670348770197d9b197cdd7a7e16f465315444e
3
+ size 14575
output_ft_more_layers_github_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-github-8e-05/checkpoint-130/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abdc7730bfbf0869132cbbd456c580122a20a540399e30640d4e51daf6f379d3
3
+ size 627
output_ft_more_layers_gutenberg_epoch_9_mlp/pythia-6_9b-nonmember-6_9b-epoch-9-pile-full-600-subsets-gutenberg-8e-05/checkpoint-640/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd2d3d121570090627f59257118b55358f83f1b060f0fb11ab062387addadff4
3
+ size 627