caizhongang
commited on
Commit
•
02e54ed
1
Parent(s):
7b80d9b
add annotations for SMPL-X_subset
Browse files
SMPL-X_subset/Synbody_v1_0_sampled-smpl.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f596de7243082720be6d0cceec616e566d2199382f7589b4a55c7f56b0deb77
|
3 |
+
size 891643079
|
SMPL-X_subset/Synbody_v1_0_sampled-smplx.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e02e372c35a5be9a4491177f570ffc9f4af40b82147ab01a6baeb1e9136e22d7
|
3 |
+
size 2622572405
|
SMPL-X_subset/visualize_2d.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
For examples:
|
3 |
+
|
4 |
+
>>> python release/visualize_2d.py \
|
5 |
+
--seq_dir synbody_v1_0/20230113/Downtown/LS_0114_004551_088/ \
|
6 |
+
--body_model_path {path_to_body_models} \
|
7 |
+
--save_path vis/LS_0114_004551_088.mp4
|
8 |
+
"""
|
9 |
+
|
10 |
+
from pathlib import Path
|
11 |
+
|
12 |
+
import cv2
|
13 |
+
import numpy as np
|
14 |
+
import pyrender
|
15 |
+
import smplx
|
16 |
+
import torch
|
17 |
+
import tqdm
|
18 |
+
import trimesh
|
19 |
+
from pyrender.viewer import DirectionalLight, Node
|
20 |
+
|
21 |
+
# some constants
|
22 |
+
num_betas = 10
|
23 |
+
num_pca_comps = 45
|
24 |
+
flat_hand_mean = False
|
25 |
+
|
26 |
+
w = 1280
|
27 |
+
h = 720
|
28 |
+
fx = fy = max(w, h) / 2
|
29 |
+
|
30 |
+
|
31 |
+
def load_data(seq_dir):
|
32 |
+
seq_dir = Path(seq_dir)
|
33 |
+
# load images
|
34 |
+
frame_paths = sorted(seq_dir.glob('rgb/*.jpeg'))
|
35 |
+
images = [cv2.imread(p) for p in frame_paths]
|
36 |
+
|
37 |
+
# load parameters
|
38 |
+
person_paths = sorted(seq_dir.glob('smplx/*.npz'))
|
39 |
+
persons = {}
|
40 |
+
for p in person_paths:
|
41 |
+
person_id = p.stem
|
42 |
+
person = dict(np.load(p, allow_pickle=True))
|
43 |
+
for annot in person.keys():
|
44 |
+
if isinstance(person[annot], np.ndarray) and person[annot].ndim == 0:
|
45 |
+
person[annot] = person[annot].item()
|
46 |
+
persons[person_id] = person
|
47 |
+
|
48 |
+
return images, persons
|
49 |
+
|
50 |
+
|
51 |
+
def compute_camera_pose(camera_pose):
|
52 |
+
# Convert OpenCV cam pose to OpenGL cam pose
|
53 |
+
|
54 |
+
# x,-y,-z -> x,y,z
|
55 |
+
R_convention = np.array([[1.0, 0.0, 0.0, 0.0], [0.0, -1.0, 0.0, 0.0], [0.0, 0.0, -1.0, 0.0], [0.0, 0.0, 0.0, 1.0]])
|
56 |
+
camera_pose = R_convention @ camera_pose
|
57 |
+
|
58 |
+
return camera_pose
|
59 |
+
|
60 |
+
|
61 |
+
def create_raymond_lights():
|
62 |
+
# set directional light at axis origin, with -z direction align with +z direction of camera/world frame
|
63 |
+
matrix = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
|
64 |
+
return [Node(light=DirectionalLight(color=np.ones(3), intensity=2.0), matrix=matrix)]
|
65 |
+
|
66 |
+
|
67 |
+
def draw_overlay(img, camera, camera_pose, meshes):
|
68 |
+
scene = pyrender.Scene(bg_color=[0.0, 0.0, 0.0, 0.0], ambient_light=(0.3, 0.3, 0.3))
|
69 |
+
|
70 |
+
for i, mesh in enumerate(meshes):
|
71 |
+
scene.add(mesh, f'mesh_{i}')
|
72 |
+
|
73 |
+
# Defination of cam_pose: transformation from cam coord to world coord
|
74 |
+
scene.add(camera, pose=camera_pose)
|
75 |
+
|
76 |
+
light_nodes = create_raymond_lights()
|
77 |
+
for node in light_nodes:
|
78 |
+
scene.add_node(node)
|
79 |
+
|
80 |
+
r = pyrender.OffscreenRenderer(viewport_width=w, viewport_height=h, point_size=1)
|
81 |
+
color, _ = r.render(scene, flags=pyrender.RenderFlags.RGBA)
|
82 |
+
color = color.astype(np.float32) / 255.0
|
83 |
+
|
84 |
+
valid_mask = color > 0
|
85 |
+
img = img / 255
|
86 |
+
output_img = color * valid_mask + (1 - valid_mask) * img
|
87 |
+
img = (output_img * 255).astype(np.uint8)
|
88 |
+
|
89 |
+
return img
|
90 |
+
|
91 |
+
|
92 |
+
def draw_bboxes(img, bboxes):
|
93 |
+
for person_id, bbox in bboxes.items():
|
94 |
+
x, y, w, h = bbox
|
95 |
+
x, y, w, h = int(x), int(y), int(w), int(h)
|
96 |
+
img = cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)
|
97 |
+
img = cv2.putText(img, person_id, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
98 |
+
|
99 |
+
return img
|
100 |
+
|
101 |
+
|
102 |
+
def visualize_2d(seq_dir, body_model_path, save_path):
|
103 |
+
# Set device
|
104 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
105 |
+
|
106 |
+
# Initialize body model
|
107 |
+
body_model = smplx.create(
|
108 |
+
body_model_path,
|
109 |
+
model_type='smplx',
|
110 |
+
flat_hand_mean=flat_hand_mean,
|
111 |
+
use_face_contour=True,
|
112 |
+
use_pca=True,
|
113 |
+
num_betas=num_betas,
|
114 |
+
num_pca_comps=num_pca_comps,
|
115 |
+
).to(device)
|
116 |
+
|
117 |
+
# Initialize components for rendering
|
118 |
+
camera = pyrender.camera.IntrinsicsCamera(fx=fx, fy=fy, cx=w / 2, cy=h / 2)
|
119 |
+
camera_pose = compute_camera_pose(np.eye(4)) # visualize in camera coord
|
120 |
+
material = pyrender.MetallicRoughnessMaterial(
|
121 |
+
metallicFactor=0.0, alphaMode='OPAQUE', baseColorFactor=(1.0, 1.0, 0.9, 1.0)
|
122 |
+
)
|
123 |
+
|
124 |
+
# Load data
|
125 |
+
images, persons = load_data(seq_dir)
|
126 |
+
|
127 |
+
# Draw overlay
|
128 |
+
save_images = []
|
129 |
+
for frame_idx, image in enumerate(tqdm.tqdm(images)):
|
130 |
+
# Prepare meshes to visualize
|
131 |
+
meshes = []
|
132 |
+
for person in persons.values():
|
133 |
+
person = person['smplx']
|
134 |
+
model_output = body_model(
|
135 |
+
global_orient=torch.tensor(person['global_orient'][[frame_idx]], device=device),
|
136 |
+
body_pose=torch.tensor(person['body_pose'][[frame_idx]], device=device),
|
137 |
+
transl=torch.tensor(person['transl'][[frame_idx]], device=device),
|
138 |
+
betas=torch.tensor(person['betas'][[frame_idx]], device=device),
|
139 |
+
left_hand_pose=torch.tensor(person['left_hand_pose'][[frame_idx]], device=device),
|
140 |
+
right_hand_pose=torch.tensor(person['right_hand_pose'][[frame_idx]], device=device),
|
141 |
+
return_verts=True,
|
142 |
+
)
|
143 |
+
vertices = model_output.vertices.detach().cpu().numpy().squeeze()
|
144 |
+
faces = body_model.faces
|
145 |
+
|
146 |
+
out_mesh = trimesh.Trimesh(vertices, faces, process=False)
|
147 |
+
mesh = pyrender.Mesh.from_trimesh(out_mesh, material=material)
|
148 |
+
meshes.append(mesh)
|
149 |
+
|
150 |
+
image = draw_overlay(image, camera, camera_pose, meshes)
|
151 |
+
|
152 |
+
# Visualize bounding boxes
|
153 |
+
# bboxes = {person_id: person['keypoints2d'][frame_idx] for person_id, person in persons.items()}
|
154 |
+
# image = draw_bboxes(image, bboxes)
|
155 |
+
|
156 |
+
save_images.append(image)
|
157 |
+
|
158 |
+
# Save visualization video
|
159 |
+
Path(save_path).parent.mkdir(parents=True, exist_ok=True)
|
160 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
161 |
+
video = cv2.VideoWriter(save_path, fourcc, fps=15, frameSize=(w, h))
|
162 |
+
for image in save_images:
|
163 |
+
video.write(image)
|
164 |
+
video.release()
|
165 |
+
|
166 |
+
print(f'Visualization video saved at {save_path}')
|
167 |
+
|
168 |
+
|
169 |
+
if __name__ == '__main__':
|
170 |
+
import argparse
|
171 |
+
|
172 |
+
parser = argparse.ArgumentParser()
|
173 |
+
parser.add_argument('--seq_dir', type=str, required=True, help='directory containing the sequence data.')
|
174 |
+
parser.add_argument(
|
175 |
+
'--body_model_path', type=str, required=True, help='directory in which SMPL body models are stored.'
|
176 |
+
)
|
177 |
+
parser.add_argument('--save_path', type=str, required=True, help='path to save the visualization video.')
|
178 |
+
args = parser.parse_args()
|
179 |
+
|
180 |
+
visualize_2d(args.seq_dir, args.body_model_path, args.save_path)
|