init
Browse files- experiments/baseline_lm_lc.py +24 -19
- experiments/baseline_lm_qa.py +25 -20
experiments/baseline_lm_lc.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import os
|
2 |
import json
|
|
|
3 |
|
|
|
4 |
import pandas as pd
|
5 |
from datasets import load_dataset
|
6 |
from lmppl import EncoderDecoderLM, LM, OpenAI
|
@@ -17,29 +19,29 @@ prompt_dict = {
|
|
17 |
data = load_dataset("cardiffnlp/relentless", split="test")
|
18 |
full_result = []
|
19 |
for lm, ppl_class, batch, pretty_name in [
|
20 |
-
("t5-small", EncoderDecoderLM, 256, "T5\textsubscript{SMALL}"),
|
21 |
-
("t5-base", EncoderDecoderLM, 128, "T5\textsubscript{BASE}"),
|
22 |
-
("t5-large", EncoderDecoderLM, 32, "T5\textsubscript{LARGE}"),
|
23 |
-
("t5-3b", EncoderDecoderLM, 1, "T5\textsubscript{XL}"),
|
24 |
-
("t5-11b", EncoderDecoderLM, 1, "T5\textsubscript{XXL}"),
|
25 |
-
("google/flan-t5-small", EncoderDecoderLM, 256, "Flan-T5\textsubscript{SMALL}"),
|
26 |
-
("google/flan-t5-base", EncoderDecoderLM, 128, "Flan-T5\textsubscript{BASE}"),
|
27 |
-
("google/flan-t5-large", EncoderDecoderLM, 32, "Flan-T5\textsubscript{LARGE}"),
|
28 |
-
("google/flan-t5-xl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XL}"),
|
29 |
-
("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"),
|
30 |
("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"),
|
31 |
-
("
|
32 |
-
("
|
33 |
-
("
|
34 |
-
("
|
35 |
-
("
|
36 |
-
("
|
|
|
|
|
|
|
|
|
|
|
37 |
("facebook/opt-30b", LM, 1, "OPT\textsubscript{30B}"),
|
38 |
-
("facebook/opt-
|
39 |
-
("facebook/opt-
|
|
|
|
|
|
|
|
|
40 |
("facebook/opt-iml-30b", LM, 1, "OPT-IML\textsubscript{30B}"),
|
41 |
-
("facebook/opt-iml-
|
42 |
("facebook/opt-iml-max-30b", LM, 1, "OPT-IML\textsubscript{MAX-30B}"),
|
|
|
43 |
# ("davinci", OpenAI, None, "GPT-3\textsubscript{davinci}")
|
44 |
]:
|
45 |
os.makedirs(f"experiments/results/lm_lc/{os.path.basename(lm)}", exist_ok=True)
|
@@ -82,6 +84,9 @@ for lm, ppl_class, batch, pretty_name in [
|
|
82 |
tmp = pd.DataFrame([true_rank, prediction], index=['true', 'pred']).T
|
83 |
cor = tmp.corr("spearman").values[0, 1]
|
84 |
full_result.append({"model": pretty_name, "relation_type": d['relation_type'], "correlation": cor})
|
|
|
|
|
|
|
85 |
|
86 |
df = pd.DataFrame(full_result)
|
87 |
models = df['model'].unique()
|
|
|
1 |
import os
|
2 |
import json
|
3 |
+
import gc
|
4 |
|
5 |
+
import torch
|
6 |
import pandas as pd
|
7 |
from datasets import load_dataset
|
8 |
from lmppl import EncoderDecoderLM, LM, OpenAI
|
|
|
19 |
data = load_dataset("cardiffnlp/relentless", split="test")
|
20 |
full_result = []
|
21 |
for lm, ppl_class, batch, pretty_name in [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"),
|
23 |
+
("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"),
|
24 |
+
("google/flan-t5-xl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XL}"),
|
25 |
+
("google/flan-t5-large", EncoderDecoderLM, 32, "Flan-T5\textsubscript{LARGE}"),
|
26 |
+
("google/flan-t5-base", EncoderDecoderLM, 128, "Flan-T5\textsubscript{BASE}"),
|
27 |
+
("google/flan-t5-small", EncoderDecoderLM, 256, "Flan-T5\textsubscript{SMALL}"),
|
28 |
+
("t5-11b", EncoderDecoderLM, 1, "T5\textsubscript{XXL}"),
|
29 |
+
("t5-3b", EncoderDecoderLM, 1, "T5\textsubscript{XL}"),
|
30 |
+
("t5-large", EncoderDecoderLM, 32, "T5\textsubscript{LARGE}"),
|
31 |
+
("t5-base", EncoderDecoderLM, 128, "T5\textsubscript{BASE}"),
|
32 |
+
("t5-small", EncoderDecoderLM, 256, "T5\textsubscript{SMALL}"),
|
33 |
+
# ("facebook/opt-66b", LM, 1, "OPT\textsubscript{66B}"),
|
34 |
("facebook/opt-30b", LM, 1, "OPT\textsubscript{30B}"),
|
35 |
+
("facebook/opt-13b", LM, 1, "OPT\textsubscript{13B}"),
|
36 |
+
("facebook/opt-6.7b", LM, 1, "OPT\textsubscript{6.7B}"),
|
37 |
+
("facebook/opt-2.7b", LM, 1, "OPT\textsubscript{2.7B}"),
|
38 |
+
("facebook/opt-1.3b", LM, 1, "OPT\textsubscript{1.3B}"),
|
39 |
+
("facebook/opt-350m", LM, 128, "OPT\textsubscript{350M}"),
|
40 |
+
("facebook/opt-125m", LM, 256, "OPT\textsubscript{125M}"),
|
41 |
("facebook/opt-iml-30b", LM, 1, "OPT-IML\textsubscript{30B}"),
|
42 |
+
("facebook/opt-iml-1.3b", LM, 1, "OPT-IML\textsubscript{1.3B}"),
|
43 |
("facebook/opt-iml-max-30b", LM, 1, "OPT-IML\textsubscript{MAX-30B}"),
|
44 |
+
("facebook/opt-iml-max-1.3b", LM, 1, "OPT-IML\textsubscript{MAX-1.3B}"),
|
45 |
# ("davinci", OpenAI, None, "GPT-3\textsubscript{davinci}")
|
46 |
]:
|
47 |
os.makedirs(f"experiments/results/lm_lc/{os.path.basename(lm)}", exist_ok=True)
|
|
|
84 |
tmp = pd.DataFrame([true_rank, prediction], index=['true', 'pred']).T
|
85 |
cor = tmp.corr("spearman").values[0, 1]
|
86 |
full_result.append({"model": pretty_name, "relation_type": d['relation_type'], "correlation": cor})
|
87 |
+
del scorer
|
88 |
+
gc.collect()
|
89 |
+
torch.cuda.empty_cache()
|
90 |
|
91 |
df = pd.DataFrame(full_result)
|
92 |
models = df['model'].unique()
|
experiments/baseline_lm_qa.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import os
|
2 |
import json
|
|
|
3 |
|
|
|
4 |
import pandas as pd
|
5 |
from datasets import load_dataset
|
6 |
from lmppl import EncoderDecoderLM, LM, OpenAI
|
@@ -17,30 +19,30 @@ prompt_dict = {
|
|
17 |
data = load_dataset("cardiffnlp/relentless", split="test")
|
18 |
full_result = []
|
19 |
for lm, ppl_class, batch, pretty_name in [
|
20 |
-
("t5-small", EncoderDecoderLM, 256, "T5\textsubscript{SMALL}"),
|
21 |
-
("t5-base", EncoderDecoderLM, 128, "T5\textsubscript{BASE}"),
|
22 |
-
("t5-large", EncoderDecoderLM, 32, "T5\textsubscript{LARGE}"),
|
23 |
-
("t5-3b", EncoderDecoderLM, 1, "T5\textsubscript{XL}"),
|
24 |
-
("t5-11b", EncoderDecoderLM, 1, "T5\textsubscript{XXL}"),
|
25 |
-
("google/flan-t5-small", EncoderDecoderLM, 256, "Flan-T5\textsubscript{SMALL}"),
|
26 |
-
("google/flan-t5-base", EncoderDecoderLM, 128, "Flan-T5\textsubscript{BASE}"),
|
27 |
-
("google/flan-t5-large", EncoderDecoderLM, 32, "Flan-T5\textsubscript{LARGE}"),
|
28 |
-
("google/flan-t5-xl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XL}"),
|
29 |
-
("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"),
|
30 |
("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"),
|
31 |
-
("
|
32 |
-
("
|
33 |
-
("
|
34 |
-
("
|
35 |
-
("
|
36 |
-
("
|
|
|
|
|
|
|
|
|
|
|
37 |
("facebook/opt-30b", LM, 1, "OPT\textsubscript{30B}"),
|
38 |
-
("facebook/opt-
|
39 |
-
("facebook/opt-
|
|
|
|
|
|
|
|
|
40 |
("facebook/opt-iml-30b", LM, 1, "OPT-IML\textsubscript{30B}"),
|
41 |
-
("facebook/opt-iml-
|
42 |
("facebook/opt-iml-max-30b", LM, 1, "OPT-IML\textsubscript{MAX-30B}"),
|
43 |
-
("
|
|
|
44 |
]:
|
45 |
os.makedirs(f"experiments/results/lm_qa/{os.path.basename(lm)}", exist_ok=True)
|
46 |
scorer = None
|
@@ -80,6 +82,9 @@ for lm, ppl_class, batch, pretty_name in [
|
|
80 |
tmp = pd.DataFrame([true_rank, prediction], index=['true', 'pred']).T
|
81 |
cor = tmp.corr("spearman").values[0, 1]
|
82 |
full_result.append({"model": pretty_name, "relation_type": d['relation_type'], "correlation": cor})
|
|
|
|
|
|
|
83 |
|
84 |
df = pd.DataFrame(full_result)
|
85 |
models = df['model'].unique()
|
|
|
1 |
import os
|
2 |
import json
|
3 |
+
import gc
|
4 |
|
5 |
+
import torch
|
6 |
import pandas as pd
|
7 |
from datasets import load_dataset
|
8 |
from lmppl import EncoderDecoderLM, LM, OpenAI
|
|
|
19 |
data = load_dataset("cardiffnlp/relentless", split="test")
|
20 |
full_result = []
|
21 |
for lm, ppl_class, batch, pretty_name in [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"),
|
23 |
+
("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"),
|
24 |
+
("google/flan-t5-xl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XL}"),
|
25 |
+
("google/flan-t5-large", EncoderDecoderLM, 32, "Flan-T5\textsubscript{LARGE}"),
|
26 |
+
("google/flan-t5-base", EncoderDecoderLM, 128, "Flan-T5\textsubscript{BASE}"),
|
27 |
+
("google/flan-t5-small", EncoderDecoderLM, 256, "Flan-T5\textsubscript{SMALL}"),
|
28 |
+
("t5-11b", EncoderDecoderLM, 1, "T5\textsubscript{XXL}"),
|
29 |
+
("t5-3b", EncoderDecoderLM, 1, "T5\textsubscript{XL}"),
|
30 |
+
("t5-large", EncoderDecoderLM, 32, "T5\textsubscript{LARGE}"),
|
31 |
+
("t5-base", EncoderDecoderLM, 128, "T5\textsubscript{BASE}"),
|
32 |
+
("t5-small", EncoderDecoderLM, 256, "T5\textsubscript{SMALL}"),
|
33 |
+
# ("facebook/opt-66b", LM, 1, "OPT\textsubscript{66B}"),
|
34 |
("facebook/opt-30b", LM, 1, "OPT\textsubscript{30B}"),
|
35 |
+
("facebook/opt-13b", LM, 1, "OPT\textsubscript{13B}"),
|
36 |
+
("facebook/opt-6.7b", LM, 1, "OPT\textsubscript{6.7B}"),
|
37 |
+
("facebook/opt-2.7b", LM, 1, "OPT\textsubscript{2.7B}"),
|
38 |
+
("facebook/opt-1.3b", LM, 1, "OPT\textsubscript{1.3B}"),
|
39 |
+
("facebook/opt-350m", LM, 128, "OPT\textsubscript{350M}"),
|
40 |
+
("facebook/opt-125m", LM, 256, "OPT\textsubscript{125M}"),
|
41 |
("facebook/opt-iml-30b", LM, 1, "OPT-IML\textsubscript{30B}"),
|
42 |
+
("facebook/opt-iml-1.3b", LM, 1, "OPT-IML\textsubscript{1.3B}"),
|
43 |
("facebook/opt-iml-max-30b", LM, 1, "OPT-IML\textsubscript{MAX-30B}"),
|
44 |
+
("facebook/opt-iml-max-1.3b", LM, 1, "OPT-IML\textsubscript{MAX-1.3B}"),
|
45 |
+
# ("davinci", OpenAI, None, "GPT-3\textsubscript{davinci}")
|
46 |
]:
|
47 |
os.makedirs(f"experiments/results/lm_qa/{os.path.basename(lm)}", exist_ok=True)
|
48 |
scorer = None
|
|
|
82 |
tmp = pd.DataFrame([true_rank, prediction], index=['true', 'pred']).T
|
83 |
cor = tmp.corr("spearman").values[0, 1]
|
84 |
full_result.append({"model": pretty_name, "relation_type": d['relation_type'], "correlation": cor})
|
85 |
+
del scorer
|
86 |
+
gc.collect()
|
87 |
+
torch.cuda.empty_cache()
|
88 |
|
89 |
df = pd.DataFrame(full_result)
|
90 |
models = df['model'].unique()
|