import os import json from random import shuffle, seed from itertools import permutations import pandas as pd from datasets import load_dataset from lmppl import EncoderDecoderLM, LM, OpenAI OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", None) runs = 3 shots_num = [1, 3] prompt_dict = { "is friend/ally of": "entities that are friends or allies", "is competitor/rival of": "entities that are competitors or rivals", "is known for": "examples of what entities are known for", "is influenced by": "what has influenced different entities", "is similar to": "examples of entities that are similar" } data = load_dataset("cardiffnlp/relentless_full", split="test") shots_ref = {} for shots in shots_num: all_perms = list(permutations(range(5), shots)) seed(42) shuffle(all_perms) shots_ref[shots] = all_perms full_result = [] for lm, ppl_class, batch, pretty_name in [ ("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"), ("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"), ("facebook/opt-13b", LM, 1, "OPT\textsubscript{13B}"), ("davinci", OpenAI, None, "GPT-3\textsubscript{davinci}") ]: scorer = None for shots in shots_num: for s in range(runs): os.makedirs(f"experiments/results/lm_lc_{shots}shots_{s}seed/{os.path.basename(lm)}", exist_ok=True) for d in data: ppl_file = f"experiments/results/lm_lc_{shots}shots_{s}seed/{os.path.basename(lm)}/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl" if not os.path.exists(ppl_file): if scorer is None: if ppl_class is OpenAI: scorer = ppl_class(OPENAI_API_KEY, model=lm) else: scorer = ppl_class(lm, device_map='auto', low_cpu_mem_usage=True, offload_folder=f"./offload_folder/{os.path.basename(lm)}") demo = [d['positive_examples'][h] for h in list(shots_ref[shots][s])] # proto = ",".join([f'["{a}", "{b}"]' for a, b in demo]) content = "\n".join([f'* ["{a}", "{b}"]' for a, b in demo]) prompt_input = f"{prompt_dict[d['relation_type']]}:\n{content}" if ppl_class is LM: prompt_input = [f'{prompt_input}\n* ["{x}", "{y}"]' for x, y in d['pairs']] ppl = scorer.get_perplexity(input_texts=prompt_input, batch=batch) output = [{"perplexity": p, "input": i, "output": ""} for p, i in zip(ppl, prompt_input)] elif ppl_class is EncoderDecoderLM: prompt_output = [f'* ["{x}", "{y}"]' for x, y in d['pairs']] ppl = scorer.get_perplexity(input_texts=[prompt_input] * len(prompt_output), output_texts=prompt_output, batch=batch) output = [{"perplexity": p, "input": prompt_input, "output": o} for p, o in zip(ppl, prompt_output)] else: prompt_input = [f'{prompt_input}\n* ["{x}", "{y}"]' for x, y in d['pairs']] ppl = scorer.get_perplexity(input_texts=prompt_input) output = [{"perplexity": p, "input": i, "output": ""} for p, i in zip(ppl, prompt_input)] with open(ppl_file, "w") as f: f.write("\n".join([json.dumps(i) for i in output])) with open(ppl_file) as f: ppl = [json.loads(i)['perplexity'] for i in f.read().split("\n") if len(i) > 0] true_rank = d['ranks'] assert len(true_rank) == len(ppl), f"Mismatch in number of examples: {len(true_rank)} vs {len(ppl)}" rank_map = {p: n for n, p in enumerate(sorted(ppl), 1)} prediction = [rank_map[p] for p in ppl] tmp = pd.DataFrame([true_rank, prediction], index=['true', 'pred']).T cor = tmp.corr("spearman").values[0, 1] full_result.append({"model": pretty_name, "shot": shots, "seed": s, "relation_type": d['relation_type'], "correlation": cor}) df = pd.DataFrame(full_result) models = df['model'].unique() df = df.pivot(columns="relation_type", index=["model", "shot", "seed"], values="correlation") df = df.T[models].T df['average'] = df.mean(1) df.to_csv(f"experiments/results/lm_lc_fewshots.csv") df = (100 * df).round() print(df) print(df.to_markdown()) print(df.to_latex(escape=False))