import pandas as pd maps = {"competitor/rival of": "Rival", "friend/ally of": "Ally", "influenced by": "Inf", "known for": "Know", "similar to": "Sim"} def to_latex(df): df.columns = [maps[x] if x in maps else x for x in df.columns] df['Avg'] = df.pop("average") df = (100 * df).round(1) tmp = df.to_latex(escape=False) tmp = tmp.replace("{lrrrrrr}", "{@{}l@{\hspace{7pt}}c@{\hspace{7pt}}c@{\hspace{7pt}}c@{\hspace{7pt}}c@{\hspace{7pt}}c@{\hspace{7pt}}c@{}}") return tmp # Main table df_oracle = pd.read_csv("results/oracle.csv", index_col=0) df_ft_pair = pd.read_csv("results/word_embedding/fasttext.csv", index_col=0) df_ft_word = pd.read_csv("results/word_embedding/fasttext_zeroshot.csv", index_col=0) df_rel = pd.read_csv("results/relbert/relbert.csv", index_col=0) table = to_latex(df_oracle) table = table.split(r"\bottomrule")[0] df_vector = pd.concat([df_ft_pair, df_ft_word, df_rel]) table_vector = to_latex(df_vector) table_vector = table_vector.split(r"\bottomrule")[0].split(r"\midrule")[1] table = table + "\midrule " + "\multicolumn{7}{@{}l}{* \emph{Embedding Models}} \\\\" + table_vector df_lm = pd.read_csv("results/lm_lc/lm.csv", index_col=0) table_lm = to_latex(df_lm) table_lm = table_lm.split(r"\bottomrule")[0].split(r"\midrule")[1] table = table + "\midrule " + "\multicolumn{7}{@{}l}{* \emph{LM (LC template)}} \\\\" + table_lm df_lm = pd.read_csv("results/lm_qa/lm.csv", index_col=0) table_lm = to_latex(df_lm) table_lm = table_lm.split(r"\midrule")[1] table = table + "\midrule " + "\multicolumn{7}{@{}l}{* \emph{LM (QA template)}} \\\\" + table_lm print(table)